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OUTLINE

|. Introduction to machine learning
MV vs |A ; Regression / Classification
Deep Learning

2. Inverse problems and tomography

3. Using DL tools for Tomography

Projection and Back-projection operators on GPU using DL
frameworks

Regularisation, sparse reconstruction, denoising, segmentation using

DL frameworks.
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INTRODUCTION TO MACHIN

W

ATl IS DEEP LEARNING!?

- LEARNING:




FIRST:WHAT IS ARTIFICIAL INTELLIGENCE!

Al is not like HAL in the “2001 A Space Odyssey’” movie.



BB AL RUSSIN DOEES

o Formal logic

Expert
systems
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NEURAL NETWORKS ARE BIOEOGICALEEINSRIRERD
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VAL ARE INEURAL INE TS
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Linear sum and Activation
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This is a single artificial neuron : the Perceptron, exactly identical

to logistic regression, which is a classification method.
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SHALLOW NN: MULTI-LAYER PERCEPTRON
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SRR NN MANY, MORENARIEL LAY ERS
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G HPSATTION TOOIES  SIMPLE CaSE

Cost
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G RSO SIRLE CASE INGIE S0 SIMELE

Cost

Too fast !

Start



G TIRHSATION L ESS SIMIPLE CASE
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G TIRHSATION L ESS SIMIPLE CASE

Real surface of a ResNet-56 trained on CIFAR-I0 [Li et al., 2018]
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RELEVANER EERIMENTS GF

Deep learning composes:

DR IOMGGRA R

Linear and non-linear computation layers;

with advanced optimisation methods;

with computations distributed on GPUs;

easily available, well maintained, open-source, packages.

Questions: can we formulate tomography reconstruction in with DL
packages, and is it interesting, useful, etc!?

Can we bring actual learning into the picture !

CentraleSupélec



JOPRIC AT ¥ L )0
PROCESSING



PESCEARNBEUSEL RO R EINCIISTING AN S B IMIENETAFICEN

DL typically requires many labeled examples for segmentation, as

well as many hours of experimentations, hyper parameter-tuning,
etc!.

However, for denoising, this is relatively easy: provide a number of
images of clean output (many photons) representative of your
data, use a denoising auto-encoder architecture, and train with
artificially noisy input.

The network can learn from few images. It can be resolution-
independent.

| You need a graduate student for this... P 16
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DENQISING ARCHTTECTUK
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Figure 3. Multi-level wavelet-CNN architecture. It consists two parts: the contracting and expanding subnetworks. Each solid box corre-
sponds to a multi-channel feature map. And the number of channels is annotated on the top of the box. The network depth is 24. Moreover,
our MWCNN can be further extended to higher level (e.g., > 4) by duplicating the configuration of the 3rd level subnetwork.

This is a multi-resolution denoising auto-encoder with wavelet features

Reproducible research: https://github.com/wenbihan/reproducible-
image-denoising-state-of-the-art
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oAl Cl 81 ) VelNE SECSPAEINEIN LN

This and many other architectures: https://niftynet.io/ and on
GitHub: https://github.com/Nif TK/NiftyNet
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FILTERED BACK-PROJECTION IN MATRIX FORM

Reconstruction is classically performed by FBP

The FBP is a composition of linear operators. It can be carried
out by matrix multiplications:

[ RLCE DS
I =T (FFKF).S’

where F is the Fourier transform and F" it adjoint, the inverse
Fourier transform.

These matrices can be implemented as layers in DL architectures.
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- XAMPLE FRAMEWORK: PYRO-NN
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FIG. 3. FDK-Reconstruction Network. Light blue nodes represent the projection domain, while dark blue nodes
stands for volume domain.

2D and 3D reconstruction operators implemented in TF |.x
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TOMOGRAPHY AS AN INVERSE PROBL

=

Computing the projection is a well-posed, direct : a solution exist, is
unique, and is regularly continuously variable: small changes in the

input cause small changes in the output.

Tomography is an example of an inverse problem. The solution may
not be unique, and small changes in the input may induce large

changes in the back-projection.

In reality we observe S = T1 + #, where 7 is some noise (Poisson,
Gauss, ...) plus some degradations (beam hardening, blur due to

motion, sensor artifacts...)

The adjoint operator yielding J = T'S is the back-projection

operator, not the inverse.
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OPTIMISATION FORMULATION

The direct observation is, for an additive noise S =T .14+ 7

In this case, it makes sense to seek to minimize HnH%, l.e
: 2
I* = argmin_||TI — S|

This is the least-square estimate. It corresponds to minimizing the
negative log-likelihood of the distribution of 7.

1 ITI - S||3
e cXp

N5 262

I* is the Maximum Likelihood estimator (MLE) for this problem.
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EL-PCISED) PROIBLEMS

Least-square problems are easy to solve:

LT —Si* = I BT 0S T IE S'S

o||TI =S|
o1

=TI 1 S)=0

yields I* = (T'T)"!. T'S, the normal equation. Not quite the min-
norm solution of the FBP.

Generally, T is ill-conditioned, and the inverse of T'T is not sparse.

This is an example of an ill-posed problem: the solution is sensitive
to noise.
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TIKHONOV REGULARIZATION

Tikhonov (1942) proposed a regularization, by using a prior term:

I* = argmin_ [|TI - S||5 + |ITI||5,
where [ is a linear operator.
Inipractice; l-—:ld:; ="V TorFr—\i

This regularization is a prior on the distribution of /, under the Bayesian
interpretation of the problem.

) p(6
p(elx):p(xl )p(0)
px)

Tikhonov regularization is an example of Maximum A Posteriori (MAP)

%
[
26
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PRAE G

-IN

-RALIZATION

MAP generalizes a lot of well-known solutions:

Tikhonov regularization with I = Id is equivalent to Wiener filtering.

Using the Poisson likelihood instead of least-squares yields the Lucy-
Richardson algorithm.

Image restoration “reduces’ to:

Finding a good prior (model) for the noise

Finding a good prior for the observation model

Optimizing the resulting formulation.
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-NALIZED FORMULATION

Formally:

I* = argmin ®(TI - S) + AR(I)

D is called the fidelity function
R is the regularization
A is a Lagrange parameter.

There has been an enormous amount of work in this area in
signal/image processing since the 1990s.

This is called the variational approach to inverse problem solving.

CentraleSupélec
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TOTALVARIATION

A seminal article is the Rudin-Osher-Fatemi article (1992).

They proposed as regularization:
R = ||VI]],,

l.e. the £ norm of the Euclidean norm of the gradient.

Compared with Tikhonov, only a ||.||? is missing.

This is based on the observation that the gradients of natural
images follow an exponential distribution:
VI ~ exp(—x),and not a normal distribution.

CentraleSupélec



NON-DIFFERENTIABILITY

TV is non-differentiable. In the 1992 article, ROF used an
approximation, the Huber norm:

1 9 f < 9
kg or |a| <
La(a) T { 5(‘@ ok %5) otherwise

It look quadratic near zero
and like | . |far from zero.
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EAND-PROXIMELY COPERATORD

An algorithm to optimize the real non-differentiable TV was
proposed by Chambolle (2004)

TV optimisation is an example of a proximal operator
. 1 >
proxf(v) = argmin (f(x) + EHx = ill5)

Proximal operators are a generalization of projection operators
for convex functions f.

p = prox(x) & x — p € Jf(p),
where df is the subgradient.
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AdLEIRI S

Iterative algorithms for solving proximity (or proximal) based
problems have been proposed since the 1960s and the work of

Moreau (1965) and Rockafeller (1970).

The simplest algorithms are the proximal point algorithm, which
can optimise a non-differential term ; and the forward-backward,
which can optimize a sum of a non-differentiable and
differentiable terms (i.e what we usually need for image
processing).

Ve EN, mpr1 =x0 — Yoty + Vg(xr)), ty € Of (To41)
= T = prOwa(CUE — 7 Vg(xe))
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AL B RECCUNIS LIRGIC ] GO

Iterative PYRO-NN Reconstruction FBP Reconstruction

W —— Shepp-Logan Phantom n
' PYRO-NN Reconstruction :
FBP Reconstruction

FBP and iterative reconstruction in Pyro-NN.

CentraleSupélec



AL EXANIELEINDEUTTRGON TCINK IGRARHY

Figure 1. The sample inspected using NT. The Cu-CuCrZr pipe is the central section of the Culham Centre for
Fusion Energy thermal break concept monoblock.

From [Micieli et al,, 201 9]
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PSEEUTEREIN 31 RECLINS TRUC TGN

Ground Truth FBP, Ny, j = 668

SIRT, N, = 668

1000 . : = : &
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Acquired at the IMAT
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Ground truth with

1335 projections and
400 iterations of SIRT.

Comparisons: 668 and
223 projections

NN-FBP adapted from
[Pelt and Batenburg,

2013]
% 36
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DEEP LEARNING FRAMEWORKS
FOR FOMOGRARRY



-EP LEARNING FRAMEWORKS

Deep learning frameworks have existed for nearly 20 years.

They have become popular and well-maintained in the last 10
years

They are implemented in C++ / CUDA with a Python front-end

Most popular:

Tensorflow + Keras

Pytorch

CentraleSupélec



TENSORFLOW

Pure tensorflow uses a graph
computation model omp M oap

SGD Trainer

) (o) () (o)

Define a graph, then run it : unusual for | e
most scientists, semi-natural for CS R @ m;“
people. 3:.‘ ’
Very powerful, pushed and developed w @

by Google. : e @
Quick introduction in Tutorial )
Keras a useful front end, not good for B G —o
extensions.
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http://tensorflow.org/

P TCIRC

PyTorch is an evolution of Torch, mostly used by FAIR (Facebook
Al Research center). Initiated partly at UCL with Yann LeCun.

Nicer and very good auto-differentiate (autograd).
Extensive tutorial here:

Main site https://pytorch.org

CentraleSupélec


https://pytorch.org/
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P TORCEIVERT INAUFIVE

# gradient descent
history =[]
for t in range(epochs+1):

# data fidelity
fidelity = (kernel @ target.reshape(-1,1) - signal)**2

# regularization
regularization = tv_prior(target)

# loss function
loss = fidelity.mean() + reg * regularization.mean()

# gradient step
loss.backward()
optimizer.step()
optimizer.zero_grad()

# projection step
target.data.clamp_ (min=0)

CentraleSupélec



CONCLUSION



Ve AR AN EER-LEARINING D) RO RO G R AR

|- Learning aspects:
Denoising, segmentation
Learn a regularisation operator

2- Provide fast forward and backward projection operators
Open-source, varied geometries, 2D or 3D, on GPU,

3- Provide excellent, general purpose, distributed, stochastic optimisation
methods implemented on GPU.

Altogether: a new software platform to develop advanced reconstruction
algorithms: you “only” need to provide the forward model.
(’4)
o
43
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