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OUTLINE
1. Introduction to machine learning

MV vs IA ; Regression / Classification

Deep Learning

2. Inverse problems and tomography

3. Using DL tools for Tomography

Projection and Back-projection operators on GPU using DL 
frameworks

Regularisation, sparse reconstruction, denoising, segmentation using 
DL frameworks.
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INTRODUCTION TO MACHINE LEARNING:  

WHAT IS DEEP LEARNING?



FIRST: WHAT IS ARTIFICIAL INTELLIGENCE?

AI is not like HAL in the “2001 A Space Odyssey” movie.
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THE AI RUSSIAN DOLLS
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AI

Machine Learning

Neural Nets

Deep Learning

AI in SF and 
the moviesFormal logic

Expert  
systems

Agents

…



NEURAL NETWORKS ARE BIOLOGICALLY-INSPIRED
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WHAT ARE NEURAL NETS ?

This is a single artificial neuron : the Perceptron, exactly identical 
to logistic regression, which is a classification method. 
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Vector Weights Linear sum and Activation Output



SHALLOW NN: MULTI-LAYER PERCEPTRON
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DEEP NN: MANY, MORE VARIED LAYERS
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GoogLeNet 
Szegedy et al 
2015 

Microsoft ResNet
He et al 2016



OPTIMISATION TOOLS: SIMPLE CASE
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OPTIMISATION: SIMPLE CASE NOT SO SIMPLE
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Too slow !

Too fast !



OPTIMISATION: LESS SIMPLE CASE
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OPTIMISATION: LESS SIMPLE CASE
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Real surface of a ResNet-56 trained on CIFAR-10 [Li et al., 2018]



RELEVANT ELEMENTS OF DL FOR TOMOGRAPHY
Deep learning composes:

Linear and non-linear computation layers; 

with advanced optimisation methods;

with computations distributed on GPUs;

easily available, well maintained, open-source, packages.

Questions: can we formulate tomography reconstruction in with DL 
packages, and is it interesting, useful, etc?

Can we bring actual learning into the picture ?
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TOMOGRAPHY POST-
PROCESSING



DL CAN BE USED FOR DENOISING AND SEGMENTATION

DL typically requires many labeled examples for segmentation, as 
well as many hours of experimentations, hyper parameter-tuning, 
etc1. 

However, for denoising, this is relatively easy: provide a number of 
images of clean output (many photons) representative of your 
data, use a denoising auto-encoder architecture, and train with 
artificially noisy input.

The network can learn from few images. It can be resolution-
independent.

 161 You need a graduate student for this…



EXAMPLE DENOISING ARCHITECTURE

This is a multi-resolution denoising auto-encoder with wavelet features

Reproducible research: https://github.com/wenbihan/reproducible-
image-denoising-state-of-the-art
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https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art
https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art
https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art


SEGMENTATION IS THE SAME

This is the V-NET architecture
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EXAMPLE OF 3D V-NET SEGMENTATION

This and many other architectures: https://niftynet.io/ and on 
GitHub: https://github.com/NifTK/NiftyNet
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https://niftynet.io/
https://github.com/NifTK/NiftyNet


CLASSICAL AND VARIATIONAL 
TOMOGRAPHY



FILTERED BACK-PROJECTION IN MATRIX FORM
Reconstruction is classically performed by FBP

The FBP is a composition of linear operators. It can be carried 
out by matrix multiplications:  
 

                         ,  

 
where   is the Fourier transform and   it adjoint, the inverse 
Fourier transform.

These matrices can be implemented as layers in DL architectures.

𝖨 = T⊤(TT⊤)−1 . 𝖲
𝖨 = T⊤(F𝖧KF) . 𝖲

F F𝖧
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EXAMPLE FRAMEWORK: PYRO-NN

2D and 3D reconstruction operators implemented in TF 1.x
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TOMOGRAPHY AS AN INVERSE PROBLEM
Computing the projection is a well-posed, direct : a solution exist, is 
unique, and is regularly continuously variable: small changes in the 
input cause small changes in the output.

Tomography is an example of an inverse problem. The solution may 
not be unique, and small changes in the input may induce large 
changes in the back-projection.

In reality we observe  , where   is some noise (Poisson, 
Gauss, …) plus some degradations (beam hardening, blur due to 
motion, sensor artifacts…)

The adjoint operator yielding   is the back-projection 
operator, not the inverse.

𝖲 = T𝖨 + η η

𝖩 = T⊤𝖲
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OPTIMISATION FORMULATION
The direct observation is, for an additive noise   

In this case, it makes sense to seek to minimize  , I.e  
 
 

This is the least-square estimate. It corresponds to minimizing the 
negative log-likelihood of the distribution of  .  
 

 

  is the Maximum Likelihood estimator (MLE) for this problem.

𝖲 = T . 𝖨 + η

∥η∥2
2

𝖨⋆ = argmin𝖨∥T𝖨 − 𝖲∥2
2

η

η ∼
1

2πσ2
exp −

∥T𝖨 − 𝖲∥2
2

2σ2

𝖨⋆
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ILL-POSED PROBLEMS
Least-square problems are easy to solve:  
  
 

  
 
yields  , the normal equation. Not quite the min-
norm solution of the FBP.

Generally,   is ill-conditioned, and the inverse of   is not sparse.

This is an example of an ill-posed problem: the solution is sensitive 
to noise.

∥T𝖨 − 𝖲∥2 = 𝖨⊤T⊤T𝖨 − 2𝖲⊤T𝖨 + 𝖲⊤𝖲

∂∥T𝖨 − 𝖲 |2

∂𝖨
= 2(T⊤T𝖨 − T⊤𝖲) = 0

𝖨⋆ = (T⊤T)−1 . T⊤𝖲

T T⊤T
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TIKHONOV REGULARIZATION
Tikhonov (1942) proposed a regularization, by using a prior term:  
 
 ,  
 
where   is a linear operator.

In practice,   ;    ; or  .

This regularization is a prior on the distribution of  , under the Bayesian 
interpretation of the problem.  
 

Tikhonov regularization is an example of Maximum A Posteriori (MAP) 
estimation.

I⋆ = argminI ∥T𝖨 − 𝖲∥2
2 + ∥Γ𝖨∥2

2

Γ

Γ = Id Γ = ∇ Γ = Δ

I

p(θ |x) =
p(x |θ)p(θ)

p(x)
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MAP GENERALIZATION
MAP generalizes a lot of well-known solutions:

Tikhonov regularization with   is equivalent to Wiener filtering.

Using the Poisson likelihood instead of least-squares yields the Lucy-
Richardson algorithm.

Image restoration “reduces” to:

Finding a good prior (model) for the noise

Finding a good prior for the observation model

Optimizing the resulting formulation.

Γ = Id
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PENALIZED FORMULATION
Formally:  
 
  

  is called the fidelity function  
  is the regularization  
  is a Lagrange parameter.

There has been an enormous amount of work in this area in 
signal/image processing since the 1990s.

This is called the variational approach to inverse problem solving.

I⋆ = argminIΦ(T𝖨 − 𝖲) + λR(𝖨)

Φ
R
λ
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EXAMPLES OF 
REGULARIZATIONS



TOTAL VARIATION
A seminal article is the Rudin-Osher-Fatemi article (1992).

They proposed as regularization: 
 
 ,  
 
I.e. the   norm of the Euclidean norm of the gradient. 

Compared with Tikhonov, only a   is missing.

This is based on the observation that the gradients of natural 
images follow an exponential distribution:  
 , and not a normal distribution.

R = ∥∇𝖨∥2

ℓ1

∥.∥2

∇I ∼ exp(−x)
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NON-DIFFERENTIABILITY
TV is non-differentiable. In the 1992 article, ROF used an 
approximation, the Huber norm:  
 
 
 
 
 
It look quadratic near zero 
and like  far from zero.| . |
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L�(a) =

⇢
1
2a

2 for |a|  �
�(|a|� 1

2�) otherwise
<latexit sha1_base64="jh4sapcubLmLdGgK6hBjUWrPV8o="></latexit>



TV AND PROXIMITY OPERATORS
An algorithm to optimize the real non-differentiable TV was 
proposed by Chambolle (2004)

TV optimisation is an example of a proximal operator 
 
 

Proximal operators are a generalization of projection operators 
for convex functions  .  
 
 ,  
where   is the subgradient.

proxf(v) = argminx( f(x) +
1
2

∥x − v∥2
2)

f

p = proxf(x) ⇔ x − p ∈ ∂f(p)
∂f
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ALGORITHMS
Iterative algorithms for solving proximity (or proximal) based 
problems have been proposed since the 1960s and the work of 
Moreau (1965) and Rockafeller (1970).

The simplest algorithms are the proximal point algorithm, which 
can optimise a non-differential term ; and the forward-backward, 
which can optimize a sum of a non-differentiable and 
differentiable terms (i.e what we usually need for image 
processing).
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8` 2 N, x`+1 = x` � �`(t
0
` +rg(x`)), t

0
` 2 @f(x`+1)

, x`+1 = prox�`f (x` � �`rg(x`))
<latexit sha1_base64="0foPggIcLLjbgGMz7ktMg6mFkfA="></latexit>



EXAMPLE RECONSTRUCTION

FBP and iterative reconstruction in Pyro-NN.
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REAL EXAMPLE IN NEUTRON TOMOGRAPHY

From [Micieli et al., 2019]
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NEUTRON 3D RECONSTRUCTION

Acquired at the IMAT 
beamline

Ground truth with 
1335 projections and 
400 iterations of SIRT.

Comparisons: 668 and 
223 projections

NN-FBP adapted from 
[Pelt and Batenburg, 
2013]
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DEEP LEARNING FRAMEWORKS 
FOR TOMOGRAPHY



DEEP LEARNING FRAMEWORKS
Deep learning frameworks have existed for nearly 20 years.

They have become popular and well-maintained in the last 10 
years

They are implemented in C++ / CUDA with a Python front-end

Most popular:

Tensorflow + Keras

Pytorch
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TENSORFLOW
Pure tensorflow uses a graph 
computation model

Define a graph, then run it : unusual for 
most scientists, semi-natural for CS 
people.

Very powerful, pushed and developed 
by Google.

Quick introduction in Tutorial

Keras a useful front end, not good for 
extensions.
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http://tensorflow.org/


PYTORCH
PyTorch is an evolution of Torch, mostly used by FAIR (Facebook 
AI Research center). Initiated partly at UCL with Yann LeCun.

Nicer and very good auto-differentiate (autograd).

Extensive tutorial here:

Main site https://pytorch.org
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https://pytorch.org/
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/


PYTORCH VERY INTUITIVE
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    # gradient descent
    history = []
    for t in range(epochs+1):
                        
        # data fidelity
        fidelity = (kernel @ target.reshape(-1,1) - signal)**2
        
        # regularization
        regularization = tv_prior(target)
            
        # loss function
        loss = fidelity.mean() + reg * regularization.mean()
        
        # gradient step
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        
        # projection step
        target.data.clamp_(min=0)



CONCLUSION



WHAT CAN DEEP-LEARNING DO FOR TOMOGRAPHY?

1- Learning aspects: 

Denoising, segmentation

Learn a regularisation operator

2- Provide fast forward and backward projection operators

Open-source, varied geometries, 2D or 3D, on GPU, 

3- Provide excellent, general purpose, distributed, stochastic optimisation 
methods implemented on GPU.

Altogether: a new software platform to develop advanced reconstruction 
algorithms: you “only” need to provide the forward model.
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