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Goal of Image Segmentation
❖ The goal of image segmentation is to identify and delineate 

semantically coherent objects in images. E.g:

❖ People, every day objects, etc

❖ Cells in biology

❖ Organs in medical imaging

❖ Fields and roads in remote sensing…

❖ The task is similar to classification in machine learning, with the 
difference that spatial coherence is important.

❖ Defining spatial coherence is difficult.
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Learning-based segmentation
❖ Today, if there is *enough* training data, learning-based 

segmentation is the state of the art:

❖ U-Net and its variation

❖ Mask-RCNN and its variation

❖ But if the data is large, 3D or more and there is little or no 
annotation, it is still useful to know how to segment images 
without resorting to deep-learning

❖ DL methods also sometime fail inexplicably (sight change of 
input modality for example)
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Simple thresholding
❖ An image of a neuron in confocal microscopy
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Pure data term



Shortest-perimeter prior
❖ Effect of the most commonly used coherence term
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Perimeter term (TV)



Use of a curvature term
❖ Use of a more advance prior (Euler’s elastica)
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Perimeter + curvature term (elastica)



Introduction

What is segmentation

Definition
Segmentation is the process of finding and delineating regions of
interests in images

Illustration

Original Final

GDR MSPC – ENS 29/11/2005 – p.3/62

Illustration

Original Final

GDR MSPC – ENS 29/11/2005 – p.3/62
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Introduction

We assume the following:

Assumptions
Objects can be described by both their contour and their content ;
There exists a metric allowing us describe the content of an object.
It can be based on texture, colour, intensity, etc.

This metric is unspecified in general, because it is problem-dependent.
We can provide many examples, but not general rules.
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Introduction

Case of a simple model

1.3: An MRI slice 1.4: Contours

Here the similarity is given by the grey-levels. Contours are estimated by
a gradient. Problem: the gradient may be weak and noisy.
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Introduction

Case of a more complex model

1.5: Fibres slice 1.6: Segmentation

Here the similarity is given by texture, which itself can be derived from
granulometries for instance [6].
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Introduction

There are many segmentation methods

A few segmentation methods
Based on contour

Marr, Canny, ...
Active contour ...

Based on regions
Watershed, Region Growing...
Thresholding, Split & Merge, MRFs,

Based on optimization
Discrete: Graph Cuts, Trees ReWeighted, Belief Propagation...
Continuous: Level Sets, Total Variation, Continuous Maximum
Flows...

More than 1000 methods published, many ad-hoc, few have survived the
test of time.
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Introduction

Specific challenges of Segmentation with Tomography
images?

Tomography data is large, microtomography even larger (20483);
We may have to deal with time series;
Materials imaging is typically dense (concrete, sand);
Contrary to medical imaging, anatomical data is not available;
Many modalities are noisy, e.g. nano-tomography, many artifacts;
Imaging is a means to an end, materials scientists do not have the
time to become imaging/segmentation specialists
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Introduction

Properties of a good segmentation method?

A segmentation method needs to be
Fast;
Effective;
Interactive;
Easy to use;
Works in 3D;
Easy to understand;
Easily available to users.

All components are essential.
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Introduction

Interactive segmentation model

An interactive segmentation method consists of:
1 A mesure of similarity indicating the content of objects, from which

the metric is derived;
2 High-level knowledge for the placement of objects, derived from one

or more of:
user interaction (manual seed placement);
pre-processing of the image (application-dependent);
machine learning (long, but can be largely automated).

3 An optimization method for the precise placement of contours.

So such methods are not really “interactive”, but they correspond to a
philosophy [13].
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Short history of segmentation methods

Why bother about history?

Because otherwise we are truly condemned to repeating it;
Because both the vision and the image analysis communities have
developed methods that are worth taking a look at;
Many segmentation methods focus on the optimization step, this is
only part of the story.

So we will briefly present a number of method and show that they
converge.
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Short history of segmentation methods Region-based segmentation

from pixels to region statistics

Region-based segmentation consider the statistics of a given region,
which may be of any shape. The challenge is to specify the region as well
as the statistics. Thresholding considers the simplest region: individual
pixels, and the simplest statistic: the grey-level intensity.
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Short history of segmentation methods Region-based segmentation

from pixels to region statistics

Split-and-merge techniques consider multi-resolution version of images
using quad-trees (2D) or oct-trees (3D) instead of pixels. They also
consider more advanced statistics measures like mean and variance.
Regions may be split or merged according to the result of statistical tests.

Region growing by merging

Merging and growing can be combined with image division (splitting). This can
be done in different ways. The goal is to avoid interactive specification of seeds.

Basic idea of region growing by merging:

• Divide image into atomic regions of constant greylevel, or other local property.

• Merge similar adjacent regions sequentially until the adjacent regions become
sufficiently different.

R3

R55R

R

weak boundary

3

R1

R4

R2
merge

Rm=R11 UR2UR4

Region growing by merging.

9

Summary of region growing

Advantages of region growing:

• Connected regions guaranteed.

• Possibility to incorporate prior knowledge about regions: shape, size, texture,
spatial relations, etc.

⇒ Regions obtained have desired properties.

Drawbacks:

• Prior information may be needed: seeds, starting points.

• Heuristics needed: for example, merging rules (‘weak borders’, etc.)

• Intrinsically sequential: no parallel implementation possible.

• Order-dependence: Result depends on the order in which pixels are examined.

Possible solutions: Look-ahead, back-tracking.
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Split-and-merge method and quadtrees

The split-and-merge algorithm uses a homogeneity predicate P and has two
stages:

• Top-down: Split image into homogeneous quadrant regions

• Bottom-up: Merge similar adjacent regions

Algorithm 2: Split-and-merge algorithm

1. Top-down: Successively subdivide image and regions into smaller quadrant
regions until P (Ri) = TRUE for each Ri. Obtain a quadtree structure.

2. Bottom-up: At each level, merge any adjacent regions Ri and Rj for which
P (Ri ∪ Rj) = TRUE.

3. Repeat steps 1 and 2 until no further splitting/merging is possible.
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Split Merge

stages of segmentation

4

A   B   D   C     A   B   C   D     A   B   C   D

1 2 3
1 (A,B,D)
2 (A,B,C)
3 (B,C,D)

1C,2D,3A

4

1R R2

quadtree split and merge segmented regions

Segmentation by split-and-merge approach.
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credit [8]
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Short history of segmentation methods Region-based segmentation

from pixels to region statistics

Because of the vertical and horizontal split and merge windows,
split-and-merge methods tend to exhibit strong grid bias.

Probleme IIProbleme II

credit [10]
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Short history of segmentation methods Region-based segmentation

from pixels to region statistics

Markov Random Fields endeavour to build up statistically consistent
regions from an initial state (e.g. all the pixels are different regions) and
by considering clique statistics and random sampling.

EE641 Digital Image Processing II: Purdue University VISE - December 24, 2010 2

Bayesian Segmentation Model

1

2

3
0

Y - Texture feature vectors 
observed from image.

X - Unobserved field containing
the class of each pixel

• Discrete MRF is used to model the segmentation field.

• Each class is represented by a value Xs � {0, · · · , M � 1}
• The joint probability of the data and segmentation is

P{Y � dy, X = x} = p(y|x)p(x)

where

– p(y|x) is the data model

– p(x) is the segmentation model
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Short history of segmentation methods Region-based segmentation

from pixels to region statistics

Markov Random Fields endeavour to build up statistically consistent
regions from an initial state (e.g. all the pixels are different regions) and
by considering clique statistics and random sampling.

EE641 Digital Image Processing II: Purdue University VISE - December 24, 2010 17

Segmentation Example

• Iterated Conditional Modes (ICM): ML ; ICM 1; ICM 5; ICM 10
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• Simulated Annealing (SA): ML ; SA 1; SA 5; SA 10
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Short history of segmentation methods Region-based segmentation

from pixels to region statistics

Example with the Maximum A-Posteriori estimation

X̂MAP = argmax
x

px |y (x |Y ) (1)

= argmax
x

log
py ,x (Y , x)

py (Y )
(2)

= argmax
x

{log p(Y |x) + log p(x)} (3)

with px (xi) =
1
Z

exp{��
P

xj2N (xi )
�(xi 6= xj)} we eventually find

X̂MAP = argmin
x

{
X

xi2E

l(yi |xi) + �
X

xj2N (xi )

�(xi 6= xj)} (4)

Optimisation is possible in the general case, with Gibbs Sampler and
Simulated annealing, but slow. However special case: binary
segmentation.
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Short history of segmentation methods Region-based segmentation

from pixels to region statistics

The watershed and related region growing methods are often considered
a region-based method, but this is quite arguable. It can be explained in
terms of a drop of water falling onto the “terrain” of the image and
ending on a local minimum of the image. The associated “catchment
basins” provide a segmentation.
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Short history of segmentation methods Region-based segmentation

from pixels to region statistics

The watershed and related region growing methods are often considered
a region-based method, but this is quite arguable. It can be explained in
terms of a drop of water falling onto the “terrain” of the image and
ending on a local minimum of the image. The associated “catchment
basins” provide a segmentation.

There are many variations of the WT: hierachical, topological, etc.
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

One of the earliest approach to edge detection was to use Laplacian zero-
crossing detection [12]. Theory shows that this should yield closed con-
tours.
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

One of the earliest approach to edge detection was to use Laplacian zero-
crossing detection [12]. Theory shows that this should yield closed con-
tours.

credit: [20]

The contours are closed but not very interesting.
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

A more successful formulation was the computational approach of
Canny [4]. It is optimal in 1D for finding a step function corrupted by
Gaussian noise. It uses Gaussian blurring, hysteresis thresholding, and
non-maxima suppression.

1.64: Orig 1.65: Sobel 1.66: Prewitt 1.67: DoG-ZC 1.68: Canny

credit: [18]
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

This kind of result made people think the edge detection problem had been
solved, but in fact, this is not so:

1.89: Orig 1.90: Canny 1.91: Snake
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

Still more successful were the active contour appoaches of the late 80s [11].
They featured a Lagrangian contour/surface discretization and variational
continuous optimisation. The models were complex and hard to manipu-
late, but at last we had closed contours/surfaces.

Esnake =

Z 1

0
Einternal(v(s)) + Edata(v(s)) + Econstraints(v(s))ds (1)

Term 1 is the internal energy, including curvature and elasticity,
optionnally including kinetic energy too.
Term 2 is the data energy, which attracts the contours towards zone
of high gradient for instance.
Term 3 defines zones of attraction and repulsion
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

With active contours (a.k.a. Snakes), an initial placement of the contour
is made, and the contour evolves according to a gradient descent of this
energy, providing a local minimum energy. Many variants were proposed.

18

(a) (b)

(c) (d)

Figure 6: (a) A -pixel magnetic resonance image of the left ventrical of a human heart; (b) the
edge map with ; (c) the GVF field (shown subsampled by a factor of two); and (d)
convergence of the GVF deformable contour.
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(a) (b)

(c) (d)

Figure 6: (a) A -pixel magnetic resonance image of the left ventrical of a human heart; (b) the
edge map with ; (c) the GVF field (shown subsampled by a factor of two); and (d)
convergence of the GVF deformable contour.
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

Extention to 3D is complex but feasible

19

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: (a) Isosurface of a 3-D object defined on a grid; (b) positions of planes A and B on which the 3-D GVF vectors are depicted in (c) and
(d), respectively; (e) the initial configuration of a deformable surface using GVF and its positions after (f) 10, (g) 40, and (h) 100 iterations.
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

Extention to 3D is complex but feasible, even with complex topologies. It
is used today in FreeSurfer.

20

(a) (b) (c)

(d) (e) (f)

Figure 8: A surface rendering of reconstructed cortical surface from one subject displayed from multiple views: (a) top, (b) left, and (c) medial.
Cross-sectional views of the same reconstructed cortical surface superimposed on the extracranial-tissues removed MR brain images: (d) axial, (e)
coronal, and (f) sagittal.

credit [19].
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

Level-sets methods were invented at the same time as active contours,
but used in imaging only about 10 years later later [16]. They represent
a Eulerian, whole-space discretisation of the same kinds of equations as
active contours via a dense function, and represent the contour/surface as
a particular level of that function.
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Short history of segmentation methods Contour-based segmentation

From edge detection to level-sets

This formulation enables new behaviours for contours, like topology
changes, but these methods are very slow. They add one dimension to the
problem. An important contribution for segmentation was the Geodesic
Active Contour, which minimizes the following equation:

argmin
s

Z

⌦

g(s)ds (2)

with g(s) = exp(�↵(G� ?rI )2) for instance. This equation is important,
because it is like a focal point.
LS methods are able to optimize locally many complex models, but the
simpler ones are the ones that are used most often.
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Short history of segmentation methods Optimization-based methods

Optimization and imaging

Until about the year 2000, models were more important and their
optimization a secondary concern. This lead to very much suboptimal
solution.
This is true for both discrete and continuous methods, for region or
contour-based method.
The focus changed gradually when researchers found it was possible to
solve the GAC equation exactly, first in 2D, then in arbitrary dimension,
both using discrete and continuous methods.
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Short history of segmentation methods Optimization-based methods

Graph Cuts principle

Graph cuts methods are based on the maxflow-mincut result of Ford and
Fulkerson, 1956 [9]

s

t

s

t

This result can be viewed in several ways: it is a binary segmentation, it
is also optimizing a sum of weights on the cut. It solves very efficiently a
specific linear programming problem.
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Short history of segmentation methods Optimization-based methods

Graph cuts: the partitionning viewpoint

The partitionning viewpoint leads to this particular graph construction:

S

T

S

T

mincut

This solve the discrete GAC equation exactly, in arbitrary dimension:

argmin
C

X

ei ,j2C

wei ,j (3)
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Short history of segmentation methods Optimization-based methods

Graph cuts: the partitionning viewpoint

A typical result looks like this, note size and grid bias:
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Short history of segmentation methods Optimization-based methods

Graph cuts: the `1 optimization viewpoint

To ameliorate the grid bias, a different graph construction can be proposed
(Boykov-Jolly 2002) [3]

S

T

S

T

Graph cuts optimize the MRF energy exactly in the binary case.

argmin Ê (G ) =
X

vi2V

wi(Vi) + �
X

eij2~E

wij�Vi 6=Vj
(4)
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Short history of segmentation methods Optimization-based methods

Graph cuts: the `1 optimization viewpoint

A typical segmentation may look like this

Is this the Holy grail ? no, due artefacts: grid bias, size bias, slow in more
than 2D, hard to parallelize.
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Short history of segmentation methods Minimal surfaces and continuous max flows

Solving the GAC is like computing a minimal surface
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Short history of segmentation methods Minimal surfaces and continuous max flows

Combinatorial Continuous Maximum Flow (CCMF)

Incidence matrix of a graph noted A

Graph Cuts formulation
MaxFlow / GraphCuts

max
F

Fst

s.t. A
T

F = 0,
|F |  g

g defined on edges

Convex optimization formulation
Continuous MaxFlow

max�!
F

Fst

s.t. r ·
�!
F = 0,

||
�!
F ||  g.

g defined on vertices

The Continuous Max Flow problem is convex
Resolution by primal-dual methods.
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Short history of segmentation methods Minimal surfaces and continuous max flows

Resolution by a system of PDEs

The following system, discretized by finite differences, leads to a
primal-dual resolution:

@~F

@⌧
= �rP (5)

@P

@⌧
= �r.~F (6)

k~Fk  g (7)

At convergence, this system solves the GAC equation exactly [1].
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Short history of segmentation methods Minimal surfaces and continuous max flows

Examples of solutions

1.230: Orig 1.231: GAC-LS

1.232: Graph cuts 1.233: CMF
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Short history of segmentation methods Minimal surfaces and continuous max flows

Finally some 3D materials science images!
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Short history of segmentation methods Minimal surfaces and continuous max flows
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Short history of segmentation methods Minimal surfaces and continuous max flows

Finally some 3D materials science images!

Highlights
First effective solution of the GAC problem
Convex optimization
Isotropic
Globally optimal
Fast : for (5123) voxels: less than a minute on GPU.
Freely avaiable: http://www.pinkhq.com
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Short history of segmentation methods Minimal surfaces and continuous max flows

Continous MRF and more

To solve the equivalent problem as MRF but in the continous domain, we
need to consider the Lagrangian dual of the continuous maximum flow
problem.
This was formulated by Strang in 1983 [17] and found to be the Total
Variation minimization problem. This was considered by many famous
authors: Mumford and Shah 1989 [14], Rudin, Osher and Fatemi
1992 [15]. A first effective solution was found by Chambolle in 2004 [5].
Thanks to a similar approach, can now solve (Couprie et al 2011) [7]:

min
x

max
|A>|F 2g2

F
>(Ax)

| {z }
regularization

+
1
2�
kHx � f k22

| {z }
data fidelity

(8)
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Short history of segmentation methods Minimal surfaces and continuous max flows

Joint tomographic reconstruction and segmentation

In practical terms, H can be the linear tomographic projection operator.
Equation (8) can solve the inverse problem jointly with segmentation.
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Short history of segmentation methods Minimal surfaces and continuous max flows

Electron tomography: biological sample

This works also in the case where we have incomplete data, e.g. in
electron tomography of flat samples (missing wedge) [?].
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Short history of segmentation methods Minimal surfaces and continuous max flows

Electron tomography: Cerium oxyde sample

We are working on incorporating shape constraints into this framework
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Power watershed

Power Watersheds: An energy minimization framework

min
x

X

eij2E

wij
p|xi � xj |q

| {z }
Smoothness term

+
X

vi2V

wi
p|xi � li |q

| {z }
Data term

l

x
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Power watershed
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Smoothness term
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X

vi2V
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| {z }
Data term

H
H
H
H

q
p 0 finite 1

1 Reduction to seeds Graph cuts
Max Spanning Forest

(watershed) [Allène et al. 07]

2 `2-norm Voronoi Random walker
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[Couprie et al. 09]

1 `1-norm Voronoi `1-norm Voronoi
Shortest Path

[Sinop et al. 07]

Hugues Talbot Image Segmentation 26 / 38



Power watershed

Power Watersheds: An energy minimization framework

min
x

X

eij2E

wij
p|xi � xj |q

| {z }
Smoothness term

+
X

vi2V

wi
p|xi � li |q

| {z }
Data term

H
H
H
H

q
p 0 finite 1

1 Reduction to seeds Graph cuts
Max Spanning Forest

(watershed) [Allène et al. 07]

2 `2-norm Voronoi Random walker
Power watershed
[Couprie et al. 09]

1 `1-norm Voronoi `1-norm Voronoi
Shortest Path

[Sinop et al. 07]

Hugues Talbot Image Segmentation 26 / 38



Power watershed

Power Watersheds: An energy minimization framework

min
x

X

eij2E

wij
p|xi � xj |q

| {z }
Smoothness term

+
X

vi2V

wi
p|xi � li |q

| {z }
Data term

H
H
H
H

q
p 0 finite 1

1 Reduction to seeds Graph cuts
Max Spanning Forest

(watershed) [Allène et al. 07]

2 `2-norm Voronoi Random walker
Power watershed
[Couprie et al. 09]

1 `1-norm Voronoi `1-norm Voronoi
Shortest Path

[Sinop et al. 07]

Hugues Talbot Image Segmentation 26 / 38



Power watershed

Power Watersheds: An energy minimization framework

min
x

X

eij2E

wij
p|xi � xj |q

| {z }
Smoothness term

+
X

vi2V

wi
p|xi � li |q

| {z }
Data term

H
H
H
H

q
p 0 finite 1

1 Reduction to seeds Graph cuts
Max Spanning Forest

(watershed) [Allène et al. 07]

2 `2-norm Voronoi Random walker
Power watershed
[Couprie et al. 09]

1 `1-norm Voronoi `1-norm Voronoi
Shortest Path

[Sinop et al. 07]

Hugues Talbot Image Segmentation 26 / 38



Power watershed

Power Watersheds: An energy minimization framework

min
x

X

eij2E

wij
p|xi � xj |q

| {z }
Smoothness term

+
X

vi2V

wi
p|xi � li |q

| {z }
Data term

H
H
H
H

q
p 0 finite 1

1 Reduction to seeds Graph cuts
Max Spanning Forest

(watershed) [Allène et al. 07]

2 `2-norm Voronoi Random walker
Power watershed
[Couprie et al. 09]

1 `1-norm Voronoi `1-norm Voronoi
Shortest Path

[Sinop et al. 07]

Hugues Talbot Image Segmentation 26 / 38



Power watershed

Power Watersheds: An energy minimization framework
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[Couprie-Grady-Najman-Talbot, ICCV 2009, PAMI 2011]
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Power watershed

Power watershed for image segmentation

Simplification for algorithms comparison: only seeds used in the data
fidelity term

min
x

X

eij2E

wij
p|xi � xj |q

s.t. x(F ) = 1, x(B) = 0

Result: segmentation s defined 8i by si =

⇢
1 if xi � 1

2 ,
0 if xi <

1
2 .
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 1
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 2
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 3
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 5
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Power watershed

Convergence of RW when p !1 toward PW
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Power watershed

Convergence of RW when p !1 toward PW
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 13
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 16
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 20
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 24
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Power watershed

Convergence of RW when p !1 toward PW

Input seeds

PowerWatershed q = 2

Random Walker p = 30
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Power watershed

Algorithm for the case p !1, variable q

Compute x minimizing

limp!1
X

eij2E

wij
p|xi � xj |q

subject to boundary conditions.
We construct an MSF outside of plateaus, and optimize

min
x

X

eij2plateau
|xi � xj |q

on the plateaus.
We call this algorithm “Power watershed”
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Power watershed

Link with watershed and unicity of solution

Max Spanning Forest (MSF) : maximize the sum of edge
weights of a forest spanning the graph.

Watershed: points where a drop of water could flow toward
different catchment bassins [Cousty et al. 07].

If seeds are the maxima of the weight function, every MSF cut is a
watershed cut [Cousty et al 07].

F

B

1

1 3

2 2

3

4

4

3

4

3

2

Theorems
The cut obtained by the power watershed algorithm is a MSF cut
(and a watershed cut if seeds are the minima of the weights).
When q > 1, the solution x obtained by the power watershed
algorithm is unique.
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The cut obtained by the power watershed algorithm is a MSF cut
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Power watershed

Comparison of results

Input seeds GraphCut

RandWalk ShtPath

MaxSF PW q = 2

Input seeds GraphCut

RandWalk ShtPath

MaxSF PW q = 2

Hugues Talbot Image Segmentation 31 / 38



Power watershed

Comparison of results

Input seeds GraphCut

RandWalk ShtPath

MaxSF PW q = 2

Input seeds GraphCut

RandWalk ShtPath

MaxSF PW q = 2

Hugues Talbot Image Segmentation 31 / 38



Power watershed

Algorithms comparison

Evaluation on GrabCut database
2 sets of seeds to study robustness to seeds centering

1 seeds well centered around boundaries:
Best performer : Shrt path, worst performer : GraphCuts

2 seeds less centered around boundaries: From best to worst :
GraphCuts, PWshed, Random Walker, MaxSF, Shrt path
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Power watershed

Computation time
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Conclusion

Conclusion

Conclusion
Many approaches were presented, from various horizons
There are surprisingly many common elements
Many issues remain: integrating higher order energy terms (e.g.
curvature), shape information, etc.
The best optimization strategy and the fastest algorithms don’t
solve problems by themselves, but we hope they contribute.

Hugues Talbot Image Segmentation 34 / 38



Conclusion

Questions?
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Advanced topic: use of curvature



Elastica
❖ Use curvature regularization in image processing tasks, 

i.e in inpainting, segmentation, stereo matching, etc.

❖ How? We aim at minimizing the functional

❖ Studied by Mumford [6], Chen et al [7], Masnou et al.[8], 
El Zehiri et al [9], Nieuwenhuis et al [10] and many 
others.

!7 CS 2019

u⋆ = arg min
us∈Ω ∫Ω

∥u − us∥2 dx + ∫∂us

α + βκ2 ds



Motivation
❖ Why curvature?

!8 CS 2019

Inpainting example (S. Masnou)



Challenge
❖ Why is this challenging ?

!9 CS 2019

u⋆ = arg min
us∈Ω ∫Ω

∥u − us∥2 dx + ∫∂us

α + βκ2 ds

Non-convex termUndefined border

Difficult to optimize

2nd order term, careful with discretization



Estimating discrete measurements is hard

!10

N: number of  
axial slices 
M: number of radial  
vertices

Schwarz Lantern counter-example: Surface area cannot be defined as the  
supremum of inscribed polyhedral surfaces [3]



Multigrid convergence

!11 CS 2019

Gauss digitization: Dh(X) = X ∩ (hℤ)2

h-boundary: ∂hX



Multigrid convergent estimators of perimeter
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Multigrid convergent estimators of perimeter

!13 CS 2019

See [1]



Multigrid convergent estimators of curvature
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Maximal Digital Circular Arc

!15 CS 2019

MDCA is a multigrid-convergent estimator of curvature [2]



Maximal Digital Circular Arc

!16 CS 2019

MDCA is a multigrid-convergent estimator of curvature [2] in )(h 1
3)



Using MDCA for optimizing curvature

!17 CS 2019

❖ Grid cell representation

❖ Binary variables for pixels and lines

❖ Relaxation, consistency constraints…

min
xp,xe∈Ω ∑

xp∈Ω
(up − xp)2 + ∑

xe∈Ω
̂κ2(xe) . xe

s.t x ∈ {0,1}, T(Ω)



Using MDCA for optimizing curvature
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Using MDCA for optimizing curvature
❖ MDCA is too local

❖ Optimisation is difficult: long running times or poor 
relaxation.

!19 CS 2019



Integral area invariant
❖ Let              be the intersection area of a ball           with 

shape 

❖ Taylor expansion:

❖ a MC curvature estimator is (see [4]):  

!20 CS 2019

σX,r(p) Br(p)
X

σX,r = π
2 r2 − κ(X, r)

3 r3 + O(r4)

κ̃ := 3
r3 ( πr2

2 − σX,r(p))



Discrete implementation
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Discrete implementation
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Optimisation
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Optimisation

!24 CS 2019

Denoting Fr (p) the intersection set with the foreground

This problem is a non-linear sum of products of binary terms.  
It can be formulated as an LP. We use QPBO [5] as the solver.



Optimisation

!25 CS 2019



Curvature flow
❖ Does it work?
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Curvature flow
❖ Does it work?
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Segmentation
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Segmentation
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