
Integer Programming Based Algorithms
for Peg Solitaire Problems

Masashi KIYOMI1, Tomomi MATSUI1
1Department of Mathematical Engineering and Information Physics,

Graduate School of Engineering, University of Tokyo,
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
{masashi, $\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{i}$ } $\copyright \mathrm{m}\mathrm{i}\mathrm{S}\mathrm{o}\mathrm{j}\mathrm{i}\mathrm{r}\mathrm{o}.\mathrm{t}.\mathfrak{U}-\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{y}\mathrm{o}.\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}$

Abstract: Peg solitaire is a classical one player game. In this paper. we dealt with the peg
solitaire problem as an integer programming problem. We proposed algorithms based on the
backtrack search method and relaxation methods for integer programming problem.
The algorithms first solve relaxed problems and get an upper bound of the number of jumps
for $\mathrm{e}\mathrm{a}\mathrm{c}1_{1}$ jump position. This upper bound saves much time at the next stage of backtrack
searching. While solving the relaxed $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{S}_{i}$ we can prove many peg solitaire problems
are infeasible. We proposed two types of backtrack $\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g}_{j}$ forward-only searching and
forward-backward searching. Our algorithnl can solve all the peg solitaire problem instances
we tried and the total computational time is less than 20 minutes on an ordinary notebook
personal computer.

Keywords: peg solitaire, integer programming, backtrack searching.

1 Introduction

Peg solitaire is a one player game using pegs
and a board with some holes. In each configu-
ration. each hole contains at most one peg (see
Figures 1. 2). A peg solitaire game has two spe-
cial cohfigurations,\cdot the starting configuration and
the finishing configuration. The aim of this game
is to get the $\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}_{\mathrm{S}}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{g}$ configuration from tlle start-
ing configuration by moving and removing pegs
as follows.

When there are (vertically or hori-
zontally) consecutive three holes satis-
fying that first and second holes contain
pegs and third hole is empty: the player
can remove two pegs from the consecu-
tive holes and place a peg in the empty
hole (see Figure 3).

The move obeying the above rule is called a jump.
In this paper, we propose an algorithm for peg

solitaire games based on integer programming
problems. In Sections 2, 3, and 4, we consider
a peg solitaire problem defined below, which is
a natural extension of the ordinary peg solitaire
game. In Section 2, we formulate the peg solitaire

problem as an integer programming problem. In
Section 3, we show a relation between the pagoda
function defined by Berlekamp. Conway and Guy
[3] and our integer programming problem. Sec-
tion 4 proposes an integer programming problem
which is useful for pruning the backtrack search
described in Section 6. We report computational
results of our $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}_{\sigma \mathrm{h}}\mathrm{m}$ in Section 5.

There are many types of peg solitaire boards
and various pairs of starting and finishing config-
urations. The most famous peg solitaire board
is that of Figure 1,. which is called the English
board.

A peg solitaire problem is defined by a peg soli-
taire board and a pair of starting and finishing
configurations. If there exists a sequence of $\mathrm{j}_{\mathrm{U}\ln_{\mathrm{P}}}\mathrm{S}$

which transforms the starting configuration into
the finishing configuration. we say that the given
peg solitaire problem is feasiblei and the sequence
of jumps is a feasible sequence. The peg solitaire
problem finds a feasible sequence of jumps if it is
feasible; and answers “infeasible”, if the problem
is not feasible.

In [8], Uehara and Iwata dealt with the gener-
alized Hi-Q problems which are equivalent to the
above peg solitaiie problems and showed the NP-

数理解析研究所講究録
1185巻 2001年 100-108 100

Figure 3: an example of a jump

Figure 1: starting configuration example

Figure 2: finishing configuration example

\bullet implies a hole with a peg. and O implies a
hole with no peg.

completeness. In the well-known book ’‘Winning
ways for Mathematical Plays [3] $\text{ノ}.$

, Berlekamp.
Conway and Guy discussed variations of prob-
lems related to peg solitaire problems. They
showed the infeasibility of the peg solitaire prob-
lem $‘:_{\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}}\mathrm{g}$ scout 5 paces out into $\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{t}^{i}$

’ by us-
ing the pagoda function approach. In [7], Kanno
proposed a linear programming based algorithm
for finding a pagoda function which guarantees
the infeasibility of a given peg solitaire problem,
if it exists. Recently, Avis and Deza [1] formu-
lated a peg solitaire problem as a combinatorial
optimization problem and discussed the proper-
ties of the feasible region called “a solitaire $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}\text{ノ}’$.

2 Integer Programming

In this section. we formulate the peg solitaire
problem as an integer $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{l}\cdot \mathrm{a}\mathrm{m}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$ problem.

We assume that all the holes on a given board
are indexed by integer numbers $\{1_{J}.2\ldots..n\}$. The
board of Figure 1 has 33 holes and so $n=33$.
We describe a state of certain configuration (pegs
in the holes) by the n-dimensional 0-1 vector p

satisfying that the $i\mathrm{t}\mathrm{h}$ element of p is 1 if and
only if the hole i contains a peg. In the rest of
this paper, we denote the starting configuration
by p_{s} and the finishing configuration by p_{f} .

Let J be the family of all the sequences of con-
secutive three holes on a given board. Each ele-
nlent in J corresponds to a certain jump and so
we can denote a jump by a unit vector indexed
by J . In the rest of this paper. we assume that
all the $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ in J are indexed by $\{$ 1. 2 \ldots . . $n\mathrm{t}\}$.

For example, the board of Figure 1 contains 76 se-
quences of consecutive three holes and so $m=76$.
Given a peg solitaire board. we define $n\cross m$ ma-
trix $\dot{A}=(a_{ij})’$. whose rows and columns are in-
dexed by holes and jumps respectively: by

$a_{ij}=\{$

1 (a peg on the hole i is
removed by the jump j),

-1 (a peg is placed on the hole i

by the jump j),
0 (otherwise).

For any 0-1 vector $p,$ $\# p$ denotes the number
of ls in the elements of p . We denote $\#\mathrm{P}_{S^{-}}\# pf$

by l . If the given peg solitaire problem is fea-
sible, any feasible sequence consists of l jumps.
For example, the peg solitaire problem defined
by Figures 1 and 2 is feasible and there exists

101

a feasible sequence whose length $l=32$. Since
each jump corresponds to an m-d..imensiOnal unit
vector, a feasible sequence corresponds to a se-
quence of l unit vectors $(x^{1}, x^{2}, \ldots, x^{l})$ such that
$x^{k}=(x^{k}, x12’., x)^{\mathrm{T}}k..km$ for all $k\in\{1,2, \ldots, l\}$

and

$x_{j}^{k}=\{$
1 (the $k\mathrm{t}\mathrm{h}$ move is the jump j).
0 (the $k\mathrm{t}\mathrm{h}$ move is not the jump j).

If a configuration $p’$ is obtained by applying the
jump j to a configuration p,\cdot then $p’=p– Au$
where u is the $j\mathrm{t}\mathrm{h}$ unit vector in $\{0,1\}^{m}$. From
the above discussion. we can formulate the peg
solitaire problem as the following integer pro-
gramming problem;

$\mathrm{I}\mathrm{P}1$: find $(x^{1}. X^{2}\ldots..x^{l})$

s . t . $\mathrm{A}(_{X^{1}+}x^{2l}+\cdots+x)=p_{S}-p_{f}$.
$0\leq p_{\mathrm{s}}-\mathrm{A}(x^{1}+x^{2}+\cdots+x^{\mathrm{k}})\leq 1$

$(\forall k\in\{1,2\ldots., l\})$,
$x_{1}^{k}+x_{2m}^{k}+\mathrm{u}\cdot\cdot+X^{k\wedge}=1$

$(\forall k\in.\{.1.2\ldots.f\text{ノ}\}\})$,
$x^{k}\in\{.0,1\}^{m}$

$(^{\forall}k\in\{1,2, \ldots, l\})$.

The problem IP1 has a solution if and only
if the given peg solitaire problem is feasible.
Clearly, any solution $(x^{1..l}\text{ノ}.., x)$ of IP1 corre-
sponds to a feasible sequence of jumps.

If we fornuulate the peg solitaire problem de-
fined by Figures 1 and 2. then the number of
variables is $m\cross l=76\cross 32=2_{i}4.32$. the num-
ber of equality constraints is $n+l=32+33=$
65 . and the number of inequality constraints is
2 $\mathrm{x}n\cross l=2\mathrm{x}33\cross 32=2.112$. $\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}_{\mathit{1}}$. the size
of the integer programming problem is huge and
so it is hard to solve the problem by commercial
integer programming software.

In Section 5. we propose an algorithm for peg
solitaire problem which is a combination of back-
track search and pruning technique based on the
above integer programming problem.

3 Linear Relaxation and
Pagoda Function

In [3], Berlekamp. Conway and Guy proposed the
pagoda function approach for showing the infea-
sibility of some peg solitaire problems including
the well-known problem $‘(\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ scout 5 paces

Figure 4: an example of assignment of Pagoda
functions

out into desert’. In this paper., we show that the
pagoda function approach is equivalent to the re-
laxation approach for the integer programming
problem.

A real valued function $\mathrm{p}\mathrm{a}\mathrm{g}:\{1_{i}2, \ldots, n\}arrow \mathrm{R}$

defined on the set of holes is called a pagoda
function when $\mathrm{p}\mathrm{a}\mathrm{g}(\cdot)$ satisfies the properties that
for every (vertically or horizontally) consecutive
three holes $(i_{1}. i_{2_{i}}i3)$. the pagoda function val-
ues $\{\mathrm{p}\mathrm{a}\mathrm{g}(i_{1}). \mathrm{p}\mathrm{a}\mathrm{g}(i_{2})i\mathrm{p}\mathrm{a}\mathrm{g}(i3)\}$ satisfies $\mathrm{p}\mathrm{a}\mathrm{g}(i_{1})+$

$\mathrm{p}\mathrm{a}\mathrm{g}(i_{2})$ \geq $\mathrm{p}\mathrm{a}\mathrm{g}(i_{3})$. (Clearly. the sequence
$(i_{3}. i_{2}, i_{1})$ is also a consecutive three holes. and
so the inequality $\mathrm{p}\mathrm{a}\mathrm{g}(i_{3})+\mathrm{p}\mathrm{a}\mathrm{g}(i_{2})\geq \mathrm{p}\mathrm{a}\mathrm{g}(i_{1})$ also
holds.) A pagoda function corresponds to an as-
signment of real values to holes on the board sat-
isfying the above properties. Figure 4 is an exam-
ple of pagoda function defined on English board.

For any configuration $p\in\{0,1\}^{n_{J}}$. we denote
the sum total $\sum_{i=1}^{n}\mathrm{p}\mathrm{a}\mathrm{g}(i)\cross p_{i}$ by $\mathrm{p}\mathrm{a}\mathrm{g}(p)$. The
definition of the pagoda functions implies that if
a configuration $p’$ is obtained by applying ajump
to a configuration p , then $\mathrm{p}\mathrm{a}\mathrm{g}(p)\geq \mathrm{p}\mathrm{a}\mathrm{g}(p)’$.
Thus, if a given peg solitaire problem is feasi-
ble, then the inequality $\mathrm{p}\mathrm{a}\mathrm{g}(p_{S})\geq \mathrm{p}\mathrm{a}\mathrm{g}(p_{f})$ holds
for any pagoda function $\mathrm{p}\mathrm{a}\mathrm{g}(\cdot)$. So, the existence
of a pagoda function $\mathrm{p}\mathrm{a}\mathrm{g}(\cdot)$ satisfying $\mathrm{p}\mathrm{a}\mathrm{g}(p_{S})<$

$\mathrm{p}\mathrm{a}\mathrm{g}(p_{f})$ shows that the given peg solitaire prob-
lem is infeasible.

102

In $[\overline{(}]i$ Kanno showed that there exists a pagoda
function which guarantees the infeasibility of the
given peg solitaire problem if and only if the op-
timal value of the following linear programming
problem is negative.

any pagoda function showing the infeasibility. Al-
though, the pagoda function approach was a pow-
erful tool for proving the infeasibility of the prob-
lem “sending scout 5 paces out into desert”, it is
not so useful for peg solitaire problems de.fined on
English board.

PAG-D: \min . $(p_{S^{-}}p_{f})^{\mathrm{T}}y$

s . t . $A^{\mathrm{T}}y\geq 0$.

It is easy to see that for any feasible solu-
tion y of $\mathrm{P}\mathrm{A}\mathrm{G}- \mathrm{D}_{l}$. the function $\mathrm{p}\mathrm{a}\mathrm{g}(\cdot)$ defined by
$\mathrm{p}\mathrm{a}\mathrm{g}(i)=y_{i}$ for all $i\in\{1_{J}.2\ldots., n\}$ is a pagoda
function. Thus. it is clear that if the optimal
value of PAG-D is negative. then the given peg
solitaire problem is infeasible. Unfortunately, the
inverse implication does not hold: that is. there
exists an infeasible peg solitaire problem instance
such that the optimal value of the corresponding
linear programming problem (PAG-D) is equal to
0 (see Kanno [7] for example).

The dual of the above linear programming
problem is

$\max\{0^{\mathrm{T}}x|Ax=p_{s}-p_{f}, x\geq 0\}$.

Since the objective function $0^{\mathrm{T}}x$ is always 0 , the
above problem is equivalent to the following prob-
$1\mathrm{e}\mathrm{m}_{j}$

.

PAG-P: find x

s . t . $Ax=p_{s}-p_{f}$, $x\geq 0$.

Thus. there exists a pagoda function which shows
the infeasibility of the given peg solitaire problem
if and only if the above linear inequality system
PAG-P is infeasible.

In the rest of this section, we show that the
problem PAG-P is obtained by relaxing the in-
teger programming problem $\mathrm{I}\mathrm{P}1$. First, we intro-
duce a new variable x satisfying $x–X^{1}+\cdots+xl$.
Next, we relax the first constraint in IP1 by
$Ax=p_{s}-p_{f}$, remove second and third con-
straints, and relax the last 0-1 constraints of origi-
nal variables by nonnegativity constraints of arti-
ficial variables x . Then the problem IP1 is trans-
formed into PAG-P.

We applied pagoda function approach to prob-
lems defined on English board and found many
infeasible problem instances which do not have

4 Upper Bound of the Number
of Jumps

In this $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}_{\mathrm{i}}$ we propose a method for finding
an upper bound of the number of jumps for each
(fixed) jump j contained in a feasible sequence.
And additionaly, this method is proved to be a
very strong tool to check the feasibilities of the
given problems. In the next section. We propose
a pruning technique for backtrack search using
the upper bound described below.

We consider the following integer programming
problem for each jump $j_{\text{ノ}}$.

$\mathrm{U}\mathrm{B}j:\max$. $x_{j}^{1}+x_{j}^{2}\cdots+x_{j}^{l}$

s . t . $A(x+\cdots+1lX)=p_{s}-p_{f}$,
$0\leq p\mathrm{S}-\mathrm{A}(_{X+\cdots+}1x^{\mathrm{k}})\leq 1$

$(\forall k\in\{1,2_{l}\ldots., l\})$,
$x_{1^{+X}2m}^{k}kk+\cdots+x=1$

$(\forall k\in.\{1_{/}. \cdot 2_{j}\ldots li\})$.
$x^{k}\in\{0.1\}^{m}$

$(^{\forall}k\in\{1_{i}2\ldots., l\})$.

Since the set of constraints of $\mathrm{U}\mathrm{B}j$ is equivalent
to that of $\mathrm{I}\mathrm{P}1_{\iota}$. the given peg solitaire problem is
feasible, if and only if $\mathrm{U}\mathrm{B}j$ has an optimal solu-
tion. We denote the optimal value of $\mathrm{U}\mathrm{B}j$ by z_{j}^{*} .
if it exists. It is clear that any feasible sequence
of the given problem contains the jump j at most
z_{j}^{*} times. $\mathrm{H}_{\mathrm{o}\mathrm{W}\mathrm{e}\mathrm{V}\mathrm{e}}\mathrm{r}\text{ノ}$. the size of the above problem
is equivalent to the original problem IP1 and $\mathrm{s}\mathrm{o}_{J}$.
it is hard to solve. In the following, we relax the
above problem to a well-solvable problem.

To decrease the number of $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{S}_{i}$ we con-
sider only the pair of starting and finishing config-
urations and ignore intermediate configurations.
The above relaxation corresponds to the replace-
ment of the variables $x^{1}+\cdots+x^{l}$ by x . We
decrease the number of constraints by dropping
second and third constraints of $\mathrm{U}\mathrm{B}j$. Then we
have the following relaxed problem of $\mathrm{U}\mathrm{B}j$

)

103

Figure 5: an example of peg solitaire problem

RU.Bj : \max . x_{j}

s . t . $Ax=p_{S}-p_{fi}$

$x_{1},$ $x_{2,.\prime},..x_{m}$ are
non-negative integers.

If a problem RUBj is infeasible for an index
$j\in\{1.2\text{ノ}’\ldots : m\}$, the original peg solitaire prob-
lem is infeasible and the problem RUBj is also in-
feasible for each index j . Since the above problem
is a relaxed problem of $\mathrm{U}\mathrm{B}j$, the optimal value is
an upper bound of the optimal value of $\mathrm{U}\mathrm{B}j$. If
we deal with the problem defined by Figures 1
and 2, the problem RUBj has $m=76$ integer
variables and $n=33$ equality constraints. The
relaxed problems RUBj of the problem defined by
Figure 7 are infeasible and so the original problenl
is also infeasible.

Figure 6 shows the optinlal values of RUBj foi
each jump $j\in\{1_{j}2\ldots., m\}$ of the peg solitaire
problem defined by Figure 5. Since RUBj is a
relaxation of $\mathrm{U}\mathrm{B}j$. feasibility of RUBj does not
guarantee the feasibility of the given peg solitaire
problem. For example, all the relaxed problems
RUBj $(j\in\{1,2_{i}\ldots.m\})$ have optimal solutions
as shown in Figure 6 and the given peg solitaire
problem defined by Figure 5 is infeasible.

If the problem PAG-P is infeasible. then the
problem RUBj is also infeasible for each $j\in$

$\{1,2, \ldots, m\}$. However, the inverse implication
does not hold. For example. PAG-P defined by
Figure 7 is feasible, and RUBj is infeasible for
each $j\in\{1,2, \ldots., m\}$.

Kanno [7] gave 10 infeasible peg solitaire prob-
lem instances such that the pagoda function ap-
proach failed to show the infeasibility. Our infea-
sibility check method can show infeasibility of all
10 examples given by Kanno. From the above,

Figure 6: maximal numbers of jumps of Figure 5

Figure 7: a problem which can be proved to be
infeasible

104

our infeasibility check method compares severely
with the pagoda function approach.

Here we note an important comment related to
the next section. See Figure 6, we can see that
there are many jumps not to be done at all and
not to be done twice and so on. So, we can prune
many and many branches during the backtrack
searching which we deal with in the next section.

Clearly. there are variations of relaxation prob-
lems of $\mathrm{U}\mathrm{B}j$. We have examined many relaxation
problems and chose the above problem RUBj
by considering the trade-off between the required
computational efforts and the tightness of the ob-
tained upper bound. However. the choice de-
pends on the available softwares and hardwares
for solving integer programming problems. In
Section 6. we will describe the environment and

the conf iguration ‘ ‘ end’ ’ ;

if (search ($\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}$, end, upper-bound,
rest) $!=$ true) $\{$

print ‘ ‘ infeasible. ’ j ;
exit;

$\}$

$\}$

bool
search ($\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ start,

configuration end,
$\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}_{-}\mathrm{o}\mathrm{f}-\mathrm{a}\mathrm{l}1_{-}\mathrm{j}\mathrm{u}\mathrm{m}_{\mathrm{P}^{\mathrm{S}}}$ upper-bound,
int rest) $\{$

if (rest $<=0$) $\{$

if (start $==$ end)

results of our $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{P}^{\mathrm{U}}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1$experiences in detail.

5 Backtrack Search

return true;
else

return false;
$\}$

First, we propose forward-only backtrack search
algorithm for solving peg solitaire problems. Be-
fore executing the backtrack $\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{r}\overline{\mathrm{c}}\mathrm{h}$, we solved
the problem RUBj for each jump position $j\in$

$\{1.2.‘\ldots, m\}\text{ノ}$ and found an upper bound of the
number of jumps. We can effectively prune the
backtrack search by using the obtained upper
bound of the number of jumps. The algorithm
is described below:

$\mathrm{v}\mathrm{o}$ id
solve ($\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ start,

configuration end) $\{$

$\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}_{-^{\mathrm{O}}--\mathrm{j}\mathrm{P}\mathrm{s}}\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{u}\mathrm{m}$ upper-bound;
int rest;

for (each jump j) $\{$

solve RUBj ;
if (RUBj is infeasible) $\{$

print ‘ ‘ inf easible. ’ ’ ;
exit;

$\}$

set the optimal value of RUBj
upper-bound $[\mathrm{j}]$;

$\}$

rest $=$ the number of pegs of
the conf iguration ‘ ‘ start’ ’

- the number of pegs of

for (all possible jumps) $\{$

if (upper-bound of the jump $<=0$)

continue;

upper-bound of the jump $=$

upper-bound of the
$\mathrm{j}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{b}^{\mathrm{T}}t‘ 1$

;
update the conf iguration start’ f

by applying the
$\mathrm{j}\mathrm{u}\mathrm{m}\dot{.}\mathrm{p}\prime \mathrm{Y}$

operation.
.. $’\sim$

if (search ($\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}$, end, upper-bound,
rest - 1) $==$ true) $\{$

display the configuration
‘ ‘ start y ’ ;

restore the
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{g}\mathrm{u}‘ \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\iota \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}$

”

by applying the reverse
jump operation;

return true;

$\}$ else $\{$

upper-bound of the jump $=$

upper-bound of the jump $+1$;
restore the

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{g}‘ \mathrm{u}_{\mathrm{S}\mathrm{t}}‘ \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{t}$

”

by applying the reverse
jump operation;

$\}$

105

$\}$

return false;
$\}$

To avoid searching the same configurations
more than twice, we used a hash table with
$2.097’.169$ entries for maintaining all the scanned
configurations. If the backtrack search algorithm
finds that the present configuration is contained
in the hash table. we can stop searching the
present configuration. We used the hash table
whose size is the maximum prime number cur-
rently available at our computer.

Here we point out the importance of the hash
technique for solving peg solitaire problem. For
example. if we use both IP and hash method. we
can solve the problem defined by Figure 8 in 2
seconds on the notebook perspnal $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}_{\mathrm{U}\mathrm{t}}\mathrm{e}1$ we
will use in the next section. But if we use only
IP upper bound or use only hash technique. the
program doesn’t stop in ten minutes.

Figure 8: an example problem to which hash is
efficient

Second, we propose forward-backward back-
track search algorithm. The second algorithm
uses the properties of a peg solitaire problem
that the number of jumps required to solve the
problem is known and solving the problem in for-
ward direction is essentially equivalent to solving
the problem in backward direction. Here, solv-
ing problem in backward $\mathrm{d}\mathrm{i}\dot{\mathrm{r}}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ means that we
start from the finishing configuration, repeat the
‘reverse jump’ operation and aim to get the start-
ing configuration. Our second algorithm executes
backtrack searching from the finishing configu-
ration to the haif depth of the search tree and
maintains all the obtained configurations by the

Figure 9: jump upper bounds of the problenl de-
fined by Fig. 8

hash table. Next, the algorithm begins backtrack
searching from the starting configuration to the
half depth of the search tree. When an obtained
configuration is in the hash table, the original
solitaire problem is feasible. If all the scanned
configurations are not in the hash table, the orig-
inal problem is infeasible. The idea of the above
second algorithm is very simple and effective for
some problems but not all. When we applied
the second algorithm, some problems require a
very large hash table whose size is greater than
2,097,169.

106

6 Computational Results

In this section, we deal with peg solitaire prob-
lems defined on the English board. We used a
notebook personal computer with MMX-Pentium
$233\mathrm{M}\mathrm{H}\mathrm{z}$ CPU, $64\mathrm{M}\mathrm{B}$ memory, and Linux $\mathrm{O}\mathrm{S}$. We
solved the relaxed problem RUBj for each j_{1}. by
the software lp-solve 3.0. This lp-solve version is
released under the LGPL license. One can find
the latest version of lp -solve at the following ftp
site.

$\mathrm{f}\mathrm{t}\mathrm{p}://\mathrm{f}\mathrm{t}\mathrm{p}$. ics.ele. $\mathrm{t}\mathrm{u}\mathrm{e}.\mathrm{n}1/\mathrm{p}\mathrm{u}\mathrm{b}/1_{\mathrm{P}-\mathrm{S}}01_{\mathrm{V}}\mathrm{e}/$

In the following. we discuss the problems RUBj
$(j\in\{1_{;}2. . . ., m\})\mathrm{j}$ which are called relaxed prob-
lems in the following. It took about 16 min-
utes to solve all the 76 relaxed problems defined
b.v Figures 1 and 2. (Since the pair of start-
ing and finishing configurations are symmetrical.
we actually need to solve only 12 relaxed prob-
lems. However, our computer program does not
use the information depending on the symmetric-
ity.) We tried more than 20 peg solitaire problem
instances, and the computational time required
for solving 76 relaxed problems for each instance
is less than 16 minutes. Here we note that there
are some problems which took only 10 seconds to
solve whole 76 relaxed problems.

We compared the forward-only backtrack
searching and the forward-backward search
method. The forward-only backtrack search
method solves the peg solitaire $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\ln$ defined
by Figures 1 and 2 in 1 second. However. if
we apply the forward-backward search method.
the hash overflows after 3. $5\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{s}$. (Here we
note that the program concludes that the hash
has overflowed when the 80 percent of the hash
is used). Since this problem is symmetric. the
forward-only search method finds a feasible se-
quence easily. However. the symmetricity in-
creases the upperbound of the number of jumps
and so the backward search generates many con-
figurations and the hash overflows.

We also tried to solve the symmetrical peg soli-
taire problem shown by Figure 10. The forward-
only search method finds a feasible sequence in 37
minutes. However, the forward-backward search
method solves the problem in 1.4 seconds. We
think that the performance of two methods de-
pends not only on the symmetricity of the prob-
lem but also on the the number of jumps required.

Figure 10: a peg solitaire problem fit for back-
$\backslash \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{d}$ and forward searching

The length of the feasible sequence of the prob-
lem defined by Figures 1 and 2 is 31 and that of
the problem defined by Figure 10 is 13. Since the
depth of search tree of the latter problem is small.
the hash does not overflow during the algorithm.

We solved more than 20 problems including
the instances given in Kanno [7]. Either forward-
only search method or forward-backward search
method solves each instances we tried in at most
20 minutes. If we select faster algorithm for each
instance we solved, the total computational time
of our algorithm is less than 20 minutes.

References

[1] Avis. D.. and Deza. A.: Solitaire Cones.
Technical Report No. SOCS-96.8. 1996.

[2] Beasley J. D.: Some notes on Solitaire. Eu-
reka. 25 (1962). 13-18.

[3] Berlekamp, E. R_{i}. Conway, J. H.. and Guy,
R. K.: Winning Ways for Mathematical
Plays. Academic $\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}_{i}$ London,. 1982.

[4] de Bruijn N. G.: A Solitaire Game and Its
Relation to a Finite Field. Journal of Recre-
ational Mathematics, 5 (1972), 133-137.

[5] Cross D. C.: Square Solitaire and varia-
tions. Journal of Recreational Mathematics,
1 (1968), 121-123.

[6] Gardner M.: Scientific American, 206
$\# 6$ (June 1962), 156-166; 214 $\# 2(\mathrm{F}\mathrm{e}\mathrm{b}.$1966),
112-113; 214 $\# 5$ (May 1966), 127.

107

[7] Kanno, E.: Linear Programming Algorithm
for Peg Solitaire Problems, Bachelor thesis,
Department of Mathematical Engineering,
Faculty of Engineering, University of Tokyo,
1997 (in Japanese).

[8] Uehara, R., Iwata, S.: Generalized Hi-Q is
$\mathrm{N}\mathrm{P}$-complete, Trans. IEICE, 73 (1990), 270-
273.

108

