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Abstract

Peg Solitaire is a well known puzzle, which can prove difficult despite its simple
rules. Pegs are arranged on a board such that at least one ‘hole’ remains. By
making draughts/checkers-like moves, pegs are gradually removed until no further
moves are possible or some goal configuration is achieved. This paper considers the
English variant, consisting of a board in a cross shape with 33 holes. Modelling Peg
Solitaire via constraint or integer programming techniques presents a considerable
challenge and is examined in detail. The merits of the resulting models are discussed
and they are compared empirically. The sequential nature of the puzzle naturally
conforms to a planning problem, hence we also present an experimental comparison
with several leading AI planning systems. Other variants of the puzzle, such as
‘Fool’s Solitaire’ and ‘Long-hop’ Solitaire are also considered.
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Figure 1: The Solitaire board and first and last states of central Solitaire.

b)a)

Figure 2: Making a move in Solitaire.

1 Introduction

Peg Solitaire1 is played on a board with a number of holes. We consider the En-
glish version, which uses a cross-shaped board with 33 holes (Figure 1). Pegs are ar-
ranged on the board so that at least one hole remains. By making horizontal or vertical
draughts/checkers-like moves (Figure 2), the pegs are gradually removed to obtain a goal
configuration. Many variants of the game are reversals: the objective is to reverse the
starting position, replacing pegs with holes and vice-versa. The classic ‘central’ Solitaire
(Figure 1) is one such example, where the objective is to leave a peg in the central hole.

There is a rich literature on this problem, which has been studied for many years.
Beasley [3] surveys the mathematical results known at the time of writing and discusses
many closely related puzzles. The major results on Peg Solitaire can be found in Uehara
and Iwata [25] on the NP-completeness of generalised Solitaire; De Bruijn [9] on the
necessary conditions for feasibility, based on a finite field; Berlekamp, Conway and Guy
[5] on the necessary conditions for feasibility, using Pagoda functions; Avis and Deza
[2] on Solitaire cone and the polyhedral approach; and Moore and Eppstein [22] on the
one-dimensional problem. Strategies and symmetries are discussed in Beeler et al. [4].

This paper concerns modelling and solving Peg Solitaire using constraint and math-
ematical programming techniques. The problem is of interest because it is highly sym-
metric and because of its sequential nature more usually tackled using AI planning.
Interesting optimisation variants, such as ‘Fool’s’ and ‘Long-hop’ Solitaire, may also be
studied in the same framework. Integer and constraint programs are first developed for
the standard version of the problem. The constraint model is enhanced through symme-
try breaking and both models are improved via a metric enabling the early detection of
dead ends. Both models are then compared empirically against leading AI planners on
a number of variations of the game. Finally, we consider the modifications necessary to
our models in order to apply them to optimisation variants of Solitaire.

1Problem 38 at www.csplib.org.
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2 Modelling English Peg Solitaire

The possible transitions of a peg from one position on the board to another are defined
using a coordinate system, as per Figure 1. We adopt the convention that x, y is the xth
column and yth row and denote a transition from x, y to x′, y′ as x, y → x′, y′. We define
a move as a transition at a particular time-step, t.

Solitaire can straightforwardly be characterised as an AI planning problem [1], since
it involves transforming an initial state into a goal state using a sequence of moves. It is,
however, simpler than a general AI planning problem in two important respects. First,
only a single move is allowed at any time-step. Second, it is possible to determine exactly
how many moves are necessary to achieve the goal state, as the following lemma shows.

Lemma 1 Single-peg English Peg Solitaire reversals require 31 moves to solve.

Proof Each move removes exactly one peg. We begin with 32 pegs. Since the
objective is to have one peg remaining, 31 moves are required. QED.

Trivially, similar results hold for more complex initial/goal conditions. These two
characteristic enable the construction of simpler integer and constraint programming
models than would be possible for a general AI planning problem, as will be discussed.

2.1 Modelling via Integer Programming

Finding a solution to Peg Solitaire may be formulated as an integer programming model
(referred to herein as model A, given below). In the terminology of Kautz and Walser
[18], our model is an operator-based encoding of the problem (also known as the regular

encoding [27]), since it employs two types of variable: the first records whether an action
(in our case, a move) occurs at a particular time-step, and the second records whether
or not a fluent (time-varying condition, in our case whether a position on the board is
occupied) holds. An integer variable, M[i, j, t, d], is equal to 1 if a move is made from
a board position (i, j) ∈ B, where B is the set of 33 holes on the board, in time-step
t = 1, ..., 31, in direction d ∈ {N, S, E, W}. Similarly, an integer variable, bState[i, j, t],
is equal to one if position (i, j) ∈ B is occupied at time-step t, where t = 1, ..., 32.

M[] and bState[] are related by precondition constraints (Eqs 2–13) in the style of
Vossen et al [27]. These constraints specify simply that an action implies its precondi-
tions. For example, if transition 0 (i.e. 2,0→4,0) is to be made at time-step t, then the
following preconditions must be satisfied:

1. There must be a peg at 2,0 (Eq 2).
2. There must be a peg at 3,0 (Eq 3).
3. There must be a hole at 4,0 (Eq 4).

In AI planning classical frame axioms describe which fluents are unchanged by an
action. In Peg Solitaire, however, the set of actions that can affect a fluent is small.
Hence, we use explanatory frame axioms ([14, 18, 27], Eq 14), where instead the set
of actions that could have effected a change is specified. As noted in [27], explanatory
frame axioms allow multiple parallel actions, necessitating conflict exclusion constraints
to prevent contradicting actions from occurring together. Parallel actions are not, how-
ever, necessary to model Peg Solitaire, so conflict exclusion constraints are not needed.
Instead, we simply state that there is exactly one move per time-step (Eq 15).

When integer programming is applied to AI planning problems, the objective function
is often set to minimise the number of actions in the plan [27], or to optimise the use
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of some set of resources [18]. Neither objective is applicable to Peg Solitaire, so the
objective function given in Eq (1) compels the last peg to be moved into the central hole
in the final board state. This goal-based objective function is similar in spirit to that
employed by Bockmayr and Dimopoulos [7]. Eq (1) is a substantial simplification of the
objective function used previously [15], which minimised the sum of every position except

the centre of the board, exploiting the fact that the problem constraints imply that there
is only one peg on the board in the final state.

As we will see, model A performs well. In future, however, we will examine alternative
encodings, such as the state-based encoding [16], which eliminates action variables.

max
M∈{0,1}

bState∈{0,1}

bState[3, 3, 32] (1)

s.t.

M[i, j, t, E] ≤ bState[i, j, t] (2)

M[i, j, t, E] ≤ bState[i + 1, j, t] (3)

M[i, j, t, E] ≤ 1 − bState[i + 2, j, t] (4)

M[i, j, t, W ] ≤ bState[i, j, t] (5)

M[i, j, t, W ] ≤ bState[i − 1, j, t] (6)

M[i, j, t, W ] ≤ 1 − bState[i − 2, j, t] (7)

M[i, j, t, S] ≤ bState[i, j, t] (8)

M[i, j, t, S] ≤ bState[i, j + 1, t] (9)

M[i, j, t, S] ≤ 1 − bState[i, j + 2, t] (10)

M[i, j, t, N ] ≤ bState[i, j, t] (11)

M[i, j, t, N ] ≤ bState[i, j − 1, t] (12)

M[i, j, t, N ] ≤ 1 − bState[i, j − 2, t] (13)

bState[i, j, t] − bState[i, j, t + 1] =
∑

d∈{E,W,S,N}

M[i, j, t, d]

+ M[i − 1, j, t, E] −M[i − 2, j, t,E] + M[i + 1, j, t, W ] −M[i + 2, j, t, W ]

+ M[i, j − 1, t, S] −M[i, j − 2, t, S] + M[i, j + 1, t, N ] − M[i, j + 2, t, N ] (14)

where (i, j) ∈ B, t = 1, ...,31 in (2) - (14)
∑

(i,j)∈B

(M[i, j, t, E] + M[i, j, t, W ] + M[i, j, t, S] + M[i, j, t, N ]) = 1 (15)

where t = 1, ...,31

2.2 Modelling via Constraint Programming

Our first constraint model (model B) is similar to model A in that it employs variables to
record the moves taken. Rather than the M[] matrix, however, model B uses an matrix,
moves[], which has 31 elements, one per move required to solve the problem. Like model
A, this approach takes advantage of Lemma 1, but it also immediately captures the fact
that only one move is allowed per time-step without the need for further constraints. The
domain of each variable in moves[] is one of the 76 possible transitions, as enumerated
in Table 1. Note how individual pegs are not distinguished: otherwise, there would be
a much greater number of transitions to consider, many of which would be symmetrical
since different pegs can be moved to the same coordinate position.

A further difference from model A is that model B specifies the problem constraints on
moves[] alone to produce a novel, purely operator-based encoding. Recall the example
of transition 0 above. Its preconditions can be checked by examining the sequence of
moves before move t to ensure that the most recent moves made involving these three
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No. Trans. No. Trans. No. Trans. No. Trans. No. Trans.
0 2,0→4,0 16 2,2→2,4 32 2,3→0,3 48 1,4→3,4 64 6,4→6,2
1 2,0→2,2 17 2,2→0,2 33 2,3→2,1 49 1,4→1,2 65 6,4→4,4
2 3,0→3,2 18 3,2→3,0 34 2,3→2,5 50 2,4→0,4 66 2,5→4,5
3 4,0→2,0 19 3,2→5,2 35 2,3→4,3 51 2,4→2,2 67 2,5→2,3
4 4,0→4,2 20 3,2→3,4 36 3,3→1,3 52 2,4→4,4 68 3,5→3,3
5 2,1→4,1 21 3,2→1,2 37 3,3→3,1 53 2,4→2,6 69 4,5→2,5
6 2,1→2,3 22 4,2→4,0 38 3,3→3,5 54 3,4→1,4 70 4,5→4,3
7 3,1→3,3 23 4,2→6,2 39 3,3→5,3 55 3,4→3,2 71 2,6→4,6
8 4,1→2,1 24 4,2→4,4 40 4,3→2,3 56 3,4→5,4 72 2,6→2,4
9 4,1→4,3 25 4,2→2,2 41 4,3→4,1 57 3,4→3,6 73 3,6→3,4
10 0,2→0,4 26 5,2→3,2 42 4,3→4,5 58 4,4→2,4 74 4,6→2,6
11 0,2→2,2 27 5,2→5,4 43 4,3→6,3 59 4,4→4,2 75 4,6→4,4
12 1,2→3,2 28 6,2→6,4 44 5,3→3,3 60 4,4→6,4
13 1,2→1,4 29 6,2→4,2 45 6,3→4,3 61 4,4→4,6
14 2,2→2,0 30 0,3→2,3 46 0,4→0,2 62 5,4→3,4
15 2,2→4,2 31 1,3→3,3 47 0,4→2,4 63 5,4→5,2

Table 1: The set, T , of Solitaire transitions.

coordinates leave the board in the required state. Every transition, τ , involves three
positions (and so preconditions, Pre(τ)). Therefore, each move is constrained as follows:

∀t ∈ {1, .., 31} ∀τ ∈ T ∀p ∈ Pre(τ) ∀τ+ ∈ Support(τ, p) ∀τ− ∈ Conflict(τ, p) :

moves[t] = τ → ∃g : moves[g]τ+ ∧ ¬∃h : g < h < i ∧ moves[h] = τ−

where Support() and Conflict() map onto a set of transitions that support and conflict
with precondition p respectively. There is also the special case where the initial state
establishes a precondition of τ .

Given 31 moves and 76 transitions for three preconditions, this leads to 7,068 con-
straints. However, each constraint can have a substantial size. In a format more suitable
for input to a constraint solver each constraint looks like:

moves[t] = τ →

(∨{moves[t − 1] = τ+|τ+ ∈ Support(τ, p)}) ∨

((∨{moves[t − 2] = τ+|τ+ ∈ Support(τ, p)}) ∧

(∧{moves[t − 1] 6= τ−|τ− ∈ Conflict(τ, p)})) ∨ ...

The worst case occurs when t = 31. By inspection, the largest size of Support(τ , p)
is 4 and the largest size of Conflict(τ , p) is 8 when p requires a peg to be present, and
symmetrically 8 and 4 when p requires an empty space. Since the Conflict() set appears
more frequently, the right hand side of the above implication constraint can contain up

to: 30 × 4 + 29(29+1)
2 × 8 = 3,600 sub-terms.

Given the substantial size of Model B, it is not surprising to find that the constraint
solver (Ilog Solver 5.3) exhausts available memory (256Mb) before all constraints in the
model are even posted. Therefore, it is not considered further. It does, however, form
the basis for our second constraint model (model C), which takes elements from both
models A and B to produce an effective constraint model.

Given both bState[] and moves[], the constraint model is much simplified. Action
pre- and post-conditions, along with explanatory frame axioms, are captured in a single
set of constraints by exploiting the structure of the problem. There are 4 mappings of
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each board position from each time-step to the next: it could start empty or full, and
end empty or full. The two cases where the state of the position remains the same can
be combined, since these are caused by exactly the same set of moves. However the cases
where the state of a position changes cannot be combined, since different transitions lead
to the position changing from empty to full, and from full to empty.

We generate and post 3 constraints for each position at each time period, giving
1, 023 ∗ 3 = 3069 constraints to specify the problem. For position i, j at time-step t:

1. (bState[i, j, t] = bState[i, j, t + 1]) ↔ (∧{moves[t] 6= τ | τ ∈ Changes(i, j)})

2. (bState[i, j, t] = 0 ∧ bState[i, j, t+1] = 1) ↔ (∨{moves[t] = τ | τ ∈ PegIn(i, j)})

3. (bState[i, j, t] = 1 ∧ bState[i, j, t+1] = 0) ↔ (∨{moves[t] = τ | τ ∈ PegOut(i, j)})

where Changes(i, j) is the set of transitions which change the state of i, j, and PegIn(i, j)
and PegOut(i, j) are the sets of transitions which place a peg at and remove a peg from
i, j respectively. At most 12 transitions can affect any one position, so the right-hand side
of the first constraint type can have a maximum of 12 conjuncts. Similarly, a maximum
of 4 and 8 transitions can place a peg at or remove a peg from a particular position.

Like the CPlan constraint-based planner [26], model C relies on a domain-specific
encoding. A more general approach [10] uses the planning graph constructed by the
Graphplan planner [6]. A planning graph is divided into levels (each represents a step
in the plan) containing a set of proposition nodes and a set of action nodes. Level
0 contains only propositions describing the initial state. The graph is incrementally
extended to a new level by adding a node for every action whose preconditions exist (and
are mutually consistent) in the current level. Each such action node asserts its effects via
new proposition nodes. Mutual exclusion constraints stipulate that two actions cannot
appear together in the same step of a valid plan. A valid plan is a consistent sub-graph
connecting proposition nodes expressing the goal conditions to the initial conditions.
Identifying a consistent sub-graph can be modelled as a constraint program in a variety
of ways [10, 21], which we will explore in future. This general approach, however, may
limit our ability to exploit the structure of Peg Solitaire and hence give a weak model.

3 Pagoda Functions

Pagoda functions are useful to prove that some problems in Peg Solitaire are insoluble
[5]. A value is assigned to each board position, so that for three positions a, b, c adjacent
in a line, their corresponding values satisfy a + b >= c. The Pagoda value of a state for
a specific Pagoda function is the sum of the values the Pagoda function takes at each
occupied board position. Moves in Solitaire take a line a, b, c of positions, remove pegs
from a and b, and place one in c. Hence, as moves are made the Pagoda value cannot
increase. The Pagoda condition is that the Pagoda value for an intermediate position
must never be strictly less than that of the goal position. Otherwise, it is not possible to
extend the current partial solution to a full solution.

There are infinitely many Pagoda functions. However, for any particular problem
some Pagoda functions are more useful than others. In an intermediate position it must
be possible for the Pagoda function to take a smaller value than that of the goal state
or the Pagoda condition will never be violated. It is beneficial for this to be possible for
as many intermediate positions as possible to detect dead ends early. We consider three
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Figure 3: Three Pagoda Functions from [5].

Pagoda functions from [5] (Figure 3). Each is sparsely populated with non-zero values,
increasing the likelihood of breaking the Pagoda condition and so pruning the search.

Adding a Pagoda function, represented by pagvals(i, j), to models A or C, which
explicitly record the state of the board, is straightforward. A new matrix of variables,
Pagoda[] with an element per board state, is added, and the following are imposed:

1. pagoda[t] =
∑

i,j pagvals(i, j)× bState[i, j, t]

2. pagoda[t] ≥ pagoda[F ], where F is the final state

4 Symmetry in Peg Solitaire

Peg Solitaire is highly symmetric, which is a significant factor in the difficulty of the
problem. This section discusses these symmetries and methods used to break them.

4.1 Board Symmetries

The English Solitaire board has rotational and reflectional symmetry. When composed,
these two types of symmetry produce eight symmetries including the identity. That
is, a rotation about 0, 90, 180 or 270 degrees, with or without a reflection across the
horizontal or vertical axes. If one board state can be transformed into another via the
application of one of the eight symmetries then the two states are symmetrical. There
are often multiple ways of arriving at symmetrical board states, as presented in Figure
4 (an identical state) and Figure 5 (symmetrical states).

Given a pair of transition sequences like those shown in the figure, the search space
beyond the point where they reach the same position is symmetrical (identical in this case,
since the same state is reached by the two sequences). This can lead to a large amount
of wasted effort, especially as the number of such symmetrical sequences increases.

Breaking this symmetry involves forming equivalence classes from the symmetric se-
quences and adding constraints to permit just one representative from each class. Given
multiple sequences leading to an identical board state b after move i, and a representative
s, the symmetry breaking constraint may be informally stated:

bState[i + 1] = b → moves[1 . . . i] = s

Given a representative s1 leading to board state b1 after move i, and sequences s2, . . . , sn

leading to board states b2, . . . , bn that are symmetrical (but not identical) to b, the
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Figure 4: Identical positions reached by symmetric sequences.

Figure 5: Symmetrical positions (rotation+reflection) reached by symmetric sequences.
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symmetry breaking constraints are slightly simpler:

∀j ∈ {2 . . . n} : bState[i + 1] 6= bj

Adding all such constraints is prohibitively expensive: it involves exploring the entire
search tree to form the equivalence classes. Symmetry breaking to a limited depth is ex-
plored in Section 4.4. Two simpler, and less expensive, methods of breaking a substantial
amount of the symmetry among sequences are discussed in the following sub-sections.

4.2 Symmetries of Independent Moves

Many pairs of moves can be applied in any order without affecting the rest of the solution.
A move inverts the states of the three pegs upon which it operates, so two moves are
independent iff the sets of pegs they involve are disjoint. Naive backtracking thrashes on
all orderings of each pair of independent moves. To break this symmetry the transitions
are ordered (via the ordering in Table 1) and constraints imposed such that adjacent,
independent pairs of moves must be ordered smallest to largest under this ordering.

Theorem 1 Given a Boolean function independent(t, t′), which returns “true” if t and

t’ are independent transitions, then if a solution to Solitaire is represented as a matrix x

of ordered elements, then placing the additional constraint independent(x[i], x[i + 1]) →
x[i] ≤ x[i + 1] does not modify the set of unique solutions.

Proof: Adding constraints cannot increase the set of unique solutions. It remains to
show that a solution represented by a matrix x can always be transformed into a solution
represented by a matrix x′ which satisfies the ordering constraints. From the definition
of independence, exchanging two adjacent moves x[i] and x[i + 1] which do not satisfy
the ordering constraints is solution-preserving if independent(x[i], x[i+1]). Having made
this transformation, and since x[i + 1] < x[i], the matrix x′ is now lexicographically less
than x. Since both x and x′ are finite, a finite number of transformations of this type
are possible before reaching a matrix which satisfies the ordering constraints. QED.

Symmetry-breaking constraints of this type, which are like the action-choice con-
straints introduced by van Beek and Chen [26], can be added straightforwardly to model
C via the moves[] matrix. Unfortunately there are other ways in which a sequence of
transitions can be interchanged. For example, if transitions 2 and 11 are independent of
transition 10 then the above set of ordering constraints would accept both the sequence
〈10, 11, 2〉 and 〈11, 2, 10〉 although they are equivalent. Attempting to break these larger
symmetries quickly becomes very complex, both in terms of the number of constraints
involved and ensuring that the sets of constraints do not conflict.

Breaking pairwise independent move symmetry is a compact method of breaking sym-
metry among sequences. This method does not break all symmetry, however. Reconsider
Figure 4: the two sequences are composed of entirely disjoint sets of moves.

4.3 Self-symmetric Board States

Rotating or reflecting certain board states produces no change in the state of the board.
The initial state of central Solitaire is an example where the board can be rotated or
reflected without being changed (Figure 1). When self-symmetry arises, equivalence
classes can be formed from the moves possible and constraints added to disallow all but
a single representative from each class. In central Solitaire, the rotational symmetry of
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the initial state can be broken by insisting that the first move is transition 7: 3,1→3,3.
Notice that reflection symmetry persists after the first move, which can be broken by
pruning transition 26: 5,2→3,2 from the domain of moves[2] in models B and C.

Self-symmetry is broken when symmetric sequences are removed, as described in Sec-
tion 4.1. Returning to central Solitaire, the states reached following initial moves consist-
ing of transition 7 and transition 26 are symmetric. However, recognising self-symmetry
can lead to more compact symmetry-breaking constraints. Given a self-symmetric state
reached by sequence s after move i, and an equivalence class of transitions τ1, . . . , τn with
τ1 chosen as the representative, the symmetry breaking constraint can be expressed:

moves[1 . . . i] = s → ∀j ∈ {2 . . . n} : moves[i + 1] 6= τj

This constraint replaces n − 1 sequence symmetry-breaking constraints as described in
Section 4.1: each unary constraint added to moves[i + 1] prevents the search from ex-
ploring a board state symmetrical to that obtained by appending τ1 to sequence s. Given
multiple equivalence classes of transitions, the consequent of the implication constraint
is extended to disallow all but the representative of each class.

Breaking all such symmetry statically is expensive, requiring the exploration of the
whole search tree. The next sub-section follows this approach to a limited depth.

4.4 Generating Symmetry Breaking Constraints

Table 2 presents the results of generating sequence and self-symmetry breaking con-
straints for a subset of the Solitaire reversals. This subset was chosen because it contains
each unique board position, up to symmetry. The symmetry-breaking constraints are
generated incrementally: at each depth constraints generated at all previous depths are
used to reduce the search space and therefore the number of other symmetry-breaking
constraints that must be generated. Depth 0 (initial state) to depth 2 are omitted for
brevity. In addition, the pairwise independent move symmetry-breaking constraints de-
scribed in Section 4.2 are used throughout to reduce the search space further.

The size of the search space varies widely among the different reversals, depending on
the branching factor. In some cases, such as the central reversal (3, 3), it is possible to
use symmetry-breaking to reduce the branching factor effectively, whereas in other cases
(e.g. (2, 1) or (2, 2)) symmetry breaking does not have as great an effect. Even with
the incremental approach, a substantial set of new constraints is necessary to break the
sequence symmetry by depth 7. Discovering and adding constraints deeper in the search
tree is unfortunately not currently feasible. However, assuming a variable ordering that
tries the moves in order, the symmetry-breaking constraints generated here involve the
top of the search tree and so prune a significant proportion of the search space. These
constraints will be exploited in the following sections.

4.5 Symmetry-breaking and the Goal State

Care must be taken with symmetry-breaking if the goal state is fixed: symmetry-breaking
prunes members of the equivalence class of the goal state, and we must ensure that the
fixed goal is not one of the elements pruned. If the final state has self-symmetry, say
rotational symmetry, then it is consistent to apply rotation symmetry-breaking through-
out. Breaking independent move symmetry has the advantage that it can be applied
without considering the goal state, since it applies to move sequences to identical states.
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Depth Choices Time(s) Depth Choices Time(s)

(2,0)

3 30 0.82

(3,0)

3 7 0.65
4 157 2.12 4 41 0.99
5 830 9.47 5 204 2.79
6 4,118 46.5 6 922 10.8
7 18,675 232.0 7 3,926 47.0

(2,1)

3 47 1.02

(3,1)

3 14 0.72
4 251 3.19 4 75 1.42
5 1,204 13.53 5 379 4.82
6 5,675 63.7 6 1,820 21.5
7 24,701 313.0 7 7,907 97.8

(2,2)

3 47 0.99

(3,2)

3 40 0.98
4 256 3.19 4 208 2.77
5 1,250 14.0 5 1,006 11.6
6 5,774 64.7 6 4,668 53.9
7 24,900 314.0 7 19,961 262.0

(3,3)

3 7 0.62
4 41 0.98
5 204 2.74
6 922 10.7
7 3,926 46.9

Table 2: Incrementally generating symmetry-breaking constraints for Solitaire reversals.
Times are to 3 significant figures. Hardware: 750Mhz Pentium III, 256Mb RAM.

5 Single-peg Solitaire Reversals

The first set of experiments concerned single-peg Solitaire reversals. This variant of the
puzzle is solved as soon as the first solution is found. Hence, the most successful solution
techniques will quickly select the ‘right’ area of the search space to focus on.

5.1 Variants of Model A

Model A can be used to solve Solitaire reversals by expressing the objective in terms
of the required board position. As well as model A in its basic form, we experimented
with introducing Pagoda functions in an attempt to improve efficiency. For each reversal
tested, an appropriate Pagoda function from the three presented in Figure 3 was chosen.

5.2 Variants of Model C

Similarly, model C is modified to solve each reversal by changing the constraints on
bState[] that specify the initial and goal positions. To gauge their relative efficiency,
Pagoda functions and symmetry-breaking were added both individually and together.

5.2.1 Heuristics

The variable/value ordering heuristic is crucial to the efficient solution of a constraint
model. Preliminary experimentation revealed that branching on the moves[] matrix,
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instantiating the variables in ascending order, performed well. Hence, this variable or-
dering was adopted throughout. Our default value ordering was simply a static, ascending
ordering following that given in Table 1. To evaluate model C thoroughly, we also ex-
perimented with several more complex dynamic value orderings, as follows. In all cases,
if no ‘preferred’ move can be made the heuristic reverts to the default value ordering.

Corner Bias. Prefers to move corner pegs towards the middle (e.g. 2, 0 → 2, 2).

Minimise Isolated Pegs. Prefers to reduce the number of pegs with no other pegs in
neighbouring holes.

Maximise/Minimise Possible Moves. Prefers to maximise/minimise the number of
possibilities for the next move.

Generate Packages. Prefers to generate one of the predefined packages.

Follow Packages. Prefers to follow move sequences to resolve packages.

Maximise/Minimise Pagoda. Prefers to maximise/minimise the Pagoda value.

where a package [5] is a frequently occurring pattern of pegs for which there is a known
series of moves to reduce the package to a single peg.

5.3 Comparison with AI Planning Systems

Models A and C are compared against four leading domain-independent AI planning
systems. Blackbox 4.22 [17] is a Graphplan-based [6] planner that transforms the plan-
ning graph into a large propositional satisfiability (SAT) problem. The solution to this
problem, which is equivalent to a valid plan, is obtained by using a dedicated SAT solver.
We used the Chaff solver [23]. Fast-forward 2.33 [19] is a forward-chaining heuristic state
space planner that generates heuristics by relaxing the planning problem and solves us-
ing a Graphplan-style algorithm. HSP 2.04 [8] maps planning instances into state-space
search problems that are solved using a variant of the A* search algorithm, with heuris-
tics extracted from the representation. STAN 45 [20] is a Graphplan-based planner with
a powerful representational structure for the planning graph and a mechanism to reduce
search and graph construction costs once the graph is stable.

5.3.1 Encoding

A simple STRIPS [12] encoding is sufficient to describe Peg Solitaire. The plan objects
are the 33 board positions, which may be full or empty. Both empty and full predicates
are required since some STRIPS planners do not support negated preconditions or goals.
Transitions are stated in terms of the three board positions which they involve, e.g.
(transition loc1 loc2 loc3). Move operators can use these transitions in either direction,
depending on the state of the relevant board positions, as presented in Figure 6.

2http://www.cs.washington.edu/homes/kautz/blackbox/
3http://www.informatik.uni-freiburg.de/˜hoffmann/ff.html
4http://www.cs.ucla.edu/˜bonet/
5http://www.dur.ac.uk/computer.science/research/stanstuff/html/dpgstan.html

12



(:action MOVE-FORWARDS (:action MOVE-BACKWARDS
:parameters :parameters

(?loc1 ?loc2 ?loc3) (?loc1 ?loc2 ?loc3)
:precondition :precondition

(and (transition ?loc1 ?loc2 ?loc3) (and (transition ?loc1 ?loc2 ?loc3)
(full ?loc1) (empty ?loc1)
(full ?loc2) (full ?loc2)
(empty ?loc3)) (full ?loc3))

:effect :effect
(and (empty ?loc1) (not (full ?loc1)) (and (full ?loc1) (not (empty ?loc1))

(empty ?loc2) (not (full ?loc2)) (empty ?loc2) (not (full ?loc2))
(full ?loc3) (not (empty ?loc3)))) (empty ?loc3) (not (full ?loc3))))

Figure 6: STRIPS operators for Solitaire.

5.4 Results

Throughout, all experiments were performed on a Pentium III 750Mhz with 256 Mb
RAM. Models A and C were solved with Ilog Solver 5.3 and CPLEX 8.0 respectively.
The experiments concerned the full set of single-peg Solitaire reversals. From [5] it is
known that all possible single-peg reversals are solvable. We set each of our systems the
task of solving all such reversals. This may seem unnecessary — after all if a reversal
for position (3,0) can be solved, the reversals for (6,3), (3, 6) and (0,3) can be obtained
easily by symmetry. However, this symmetry is broken by our default value ordering.
Nor does the symmetry hold for the planners, which are also given the transitions in a
particular order. Hence, we experimented with the full set for a fair comparison.

Table 3 summarises the results for models A (rows 5 and 6) and C (rows 1 – 4) with
the default value ordering. The performance of the planners is given in Table 4. We begin
by considering model A. On this set of problems model A performs relatively better than
model C with the default value ordering, solving 14 and 17 instances without and with
Pagoda functions, respectively. However, the Pagoda functions do not provide a uniform
improvement, sometimes leading Cplex away from a solution. By considering the number
of instances solved by the AI Planners (BBox=27, FF=22, HSP=15, Stan=1) one may
say that integer programming performs as well as an average AI planner here.

In [15] we reported that Model A with an objective function that incurs a penalty if
the last peg is not in the centre hole failed to return a solution in 12 hours using Cplex
8.0 with its default settings (the branching variable is automatically selected). In view
of this failure, a number of variable selection strategies were tried. We were able to solve
model A in 388 seconds (10 nodes visited) using the variable selection strategy based
on “pseudo reduced costs”. Employing Eq (1) instead and using the default settings, a
solution is obtained in 521 seconds (28 nodes visited). Hence, Cplex successfully selected
a branching strategy befitting the new objective function. This variable selection strategy
is “branch on variables with maximum infeasibility”.

As noted, Peg Solitaire does not involve optimisation, and neither function represents
a genuine objective in that both can be written simply as constraints. In fact, Cplex
determines the optimal objective function value, and hence the best bound possible,
during preprocessing. Hence, the role of the objective function is not to provide strong
bounds, but to select a branching variable. Therefore, the discrepancy in performance
of these two objective functions is due to choosing the right variable selection strategy.

We now turn our attention to model C. The pairwise symmetry-breaking constraints
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–/– –/– –/–
–/– –/– –/–
–/1,270 –/– 1,820/600
–/– 2,900/222 –/–
–/– 2,730/55.0 –/–

451/2,210 –/– –/1,860
439/61.0 –/– –/– –/– 7.00/2.70 –/– –/–
443/65.0 –/– –/– –/– 8.00/2.70 –/– –/–

–/– –/1,170 1,150/– 1,240/– –/– 1,950/777 562/2,210
–/– –/– 17.0/3.50 16.0/4.10 1,700/197 –/– –/–
–/– –/– 18.0/4.90 7.90/5.00 1,710/200 –/– –/–
–/– –/– 2,590/1,080 521/– 375/444 –/– –/–
–/– –/1,890 116/19.0 –/338 –/– –/– –/–
–/– –/1,040 102/22.0 –/350 –/– –/– –/–

1,530/860 2,560/1,230 –/– –/2,000 1,410/– 1,690/763 –/1,240
–/– –/– –/–
–/– –/– –/–
–/– –/2,960 820/264
–/– –/– –/– (1)/(2)
–/– –/– –/– (3)/(4)
–/1,340 –/– –/– (5)/(6)

Table 3: Solitaire reversals solved via CP and IP models. Choices (CP) and nodes (IP) are
presented in the top table. Times (to three significant figures) are presented in the bottom table.
A dash indicates no solution within 1 hour.
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13.0/49.0 */* 14.0/622
*/* 148/* */*

25.0/121 543/* 17.0/1.00
*/– */* */–

19.0/0.20 25.0/0.70 47.0/1.0 48.0/3,540 38.0/0.60 14.0/273 21.0/0.60
30.0/* */1,130 */* 86.0/* 27.0/* 48.0/– 32.0/*

*/* 862/– 28.0/0.10 */* 30.0/48.0 620/– */–
*/* */– 125/* 57.0/* */* 574/– */*

19.0/276 14.0/0.05 42.0/0.15 44.0/0.05 49.0/0.05 16.0/1,560 19.0/*
*/* 97.0/– */* 313/* 60.0/* */– 125/*

16.0/553 */* 27.0/1,520
*/– */– */–

18.0/– */* 21.0/9.80 Bbox/FF
298/* */* 154/* HSP/Stan

Table 4: Solitaire reversals solved via AI Planners. Times given to three significant
figures. An asterisk indicates memory resources exhausted, and a dash indicates time
exhausted (1 hour allowed).

(Section 4.2) effectively reduce search effort, allowing some problems to be solved that
were not previously solvable within one hour. However, the symmetry-breaking con-
straints based on self-symmetry and symmetric sequences were not useful (results omit-
ted for brevity). These constraints were generated only to a limited depth (Section 4.4)
and, due to the size of the search space, this area of the search tree is not visited often
enough for them to make an impact. In subsequent sections, when the whole space must
be explored to prove a solution optimal, we expect that these constraints will be much
more useful. As for model A, using Pagoda functions to guide the search also significantly
improves model C. This is despite the fact that the single-peg goal state has a Pagoda
value of one, hence only states with value zero are pruned. Also, Pagoda functions and
symmetry-breaking are complementary and can be combined for further improvements.

Overall, however, model C with the default value ordering gave the weakest coverage
on this set of problems of all the systems tested, except Stan. We conjectured that this
was due to the naive value ordering heuristic, which is crucial when finding a single
solution, as noted above. The heuristics given in Section 5.2.1 are designed to guide the
search in a more informed way. The results of combining these heuristics with model C are
presented in Table 5. Note that symmetry-breaking was not used in these experiments,
since it tended to conflict with the heuristics. Furthermore, preliminary experimentation
revealed that the value heuristics either guide the search towards the solution relatively
quickly or towards a fruitless area of the search tree such that a solution cannot be found
in a reasonable time. Hence, these experiments were run with a 15-minute time limit.

Two of the heuristics, Minimise Pagoda and Maximise Possible Moves, were unable
to solve any of the reversals in 15 minutes, and were both unable to solve the central
reversal given 10 hours. Investigating the search trees generated by these two heuristics
suggested that the problem is that early in the search they lead to board states with many
distinct holes and make no attempt to remove pegs from the outmost corners (which are
typically the most difficult pegs to remove). The most successful heuristics were Corner

Bias and Minimise Isolated. However, the default value ordering performs relatively well
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Minimise Moves (5)
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0
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Maximise Pagoda (6)

7
1
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9
5

6
,8

1
6

5
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0
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–/– –/– –/–
–/– –/– –/–
–/887 –/– –/–
–/– –/– –/–
–/– –/– –/3.52
–/– –/– –/–

–/– –/– –/– –/– 0.72/– –/– –/–
522/– 348/– –/– –/850 640/– –/– –/802

–/– 811/– 2.52/– –/832 –/– –/– –/54.5
–/– –/– 1.21/16.7 1.30/– –/– –/– –/–
–/– –/– –/– –/– –/– –/– –/–
–/– –/– –/– –/– –/– –/– –/–
–/– –/– 1.90/– –/30.1 0.70/– –/– –/–
–/– –/– –/104 –/– –/1.62 2.43/– –/–
–/– –/– 181/– –/– –/– –/– –/–

1.20/– –/– –/–
–/– –/– –/–
–/– –/– –/–
–/– –/60.1 5.54/– (1)/(2)
–/– –/– –/104 (3)/(4)
–/– –/– –/– (5)/(6)

Table 5: Solitaire reversals solved via model C and a number of value heuristsics. Choices
are presented in the top table. Times (to three significant figures) are presented in the bottom
table. A dash indicates no solution within 15 minutes.
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when compared with the other heuristics. This appears to be because it tends to remove
all pegs from one area of the board before moving on to another, which reduces the
chance of pegs becoming isolated. The Minimise Moves and Maximise Pagoda heuristics
are at first glance counter-intuitive as they are the opposite of what may be expected.
Their advantage however comes from the fact that like Minimise Isolated they encourage
clearing one area of the board before performing moves in another.

The Follow Packages and Find Packages heuristics performed somewhat disappoint-
ingly. This may be because they were implemented “statelessly”, where at each search
node the current packages and partly-removed packages were found and a move chosen
accordingly. As a board typically contains many overlapping packages, the heuristic
did not remove complete packages as intended. Developing a heuristic able to resolve
individual packages is a more complex task, and forms an important piece of future work.

Finally, we consider the performance of the four AI planners. The most successful
planning systems, Blackbox and FF, achieved a high percentage of coverage in terms of
number of problems solved. The less successful systems appeared to suffer as much from
lack of resources as lack of time. The most difficult reversals for the planners to solve
were the central reversal (which is one of the reversals solved most easily using model C)
and reversals at positions 2 and 3 spaces distant from the centre in a straight line. In
particular, the reversal 3 spaces distant from the centre, namely at (3, 0) and symmetric
equivalents, is well known as the ‘notorious’ reversal because of its difficulty [5].

6 Solitaire Patterns

The second set of experiments concerned Solitaire patterns: goal configurations with a
number of pegs in some specific arrangement. The instances tested are a representative
selection from those given in [3] (Figure 7). Throughout, the initial state is the same
as that of central Solitaire. Again, this variant is solved as soon as the first solution is
found, so success depends on examining the right areas of the search space early.

Prior to running the experiments it was expected that the Pagoda functions would
prove more useful, since goal states containing a number of pegs tend to have higher
Pagoda values than single-peg reversals. Hence, it is more likely that the Pagoda value
of an intermediate state will be less than that of the goal, increasing pruning.

6.1 Results

The results are presented in Table 6. On this occasion, integer programming is the most
robust approach, solving all of the instances studied. The objective function used is a
straightforward modification of that used for the Solitaire reversals: in the final state, the
sum of the positions where there must be a peg is maximised. This is more constraining
than the single-peg final states in the reversals problems and is exploited well by integer
programming. The relatively good performance of integer programming on the Solitaire
patterns can be attributed to a better search guidance, which is a direct consequence of
the use of linear relaxations. In the absence of such guidance, the CP and AI Planning
approaches sometimes proceed down dead-ends from which they cannot recover.

As expected, the Pagoda functions can provide a substantial improvement for Model
A on these instances. Consider, for example, the results for pattern 4. However, they can
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Figure 7: Selected Solitaire Patterns Problems. Goal states shown.
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CP CP+P CP+sy m CP+sym+P
No. Time Choices Time Choices Time Choices Time Choices
1 - - - -
2 - - - -
3 194 26,888 201 26,876 181 22,766 181 22,754
4 - 3,140 442,348 410 57,202 419 57,202
5 - - - -
6 - - - -
7 301 38,256 294 37,475 294 35,749 269 34,990
8 - - - -
9 3,090 314,222 1,010 127,305 304 34,937 196 25,383
10 1 1 1 1 601 38,143 610 38,135

IP IP+P BBox FF HSP Stan
No. Time Nodes Time Nodes Time
1 102 40 89.0 14 16.0 - * *
2 338 109 - * - * *
3 12.0 7 25.0 29 0.2 0.10 25.0 0.30
4 2,280 5,472 146 390 24.0 - * *
5 114 81 71.0 36 0.5 - * 0.60
6 3,550 3,121 1,000 1,049 14.0 0.10 * *
7 314 249 - 17.8 - * *
8 76.0 31 2,710 1,200 25.0 - * *
9 2,940 521 - * 130 253 *
10 943 157 1,270 177 45.0 94 * *

Table 6: Results: Solitaire Patterns. Times in seconds to 3 significant figures. An
asterisk indicates memory resources exhausted, and dash indicates time exhausted (1
hour allowed).
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also have detrimental effects. On these occasions, the additional constraints are unable
to reduce the search and so become a burden to the solver.

Model C was used with the default value ordering, since it proved reasonably success-
ful on the single-peg reversals, and because the more informed heuristics were tailored
towards a goal with a single peg. The performance of model C is comparable to that
of the planners FF, HSP and Stan in terms of coverage. In contrast to these systems
time rather than memory resources are exhausted when performance is poor. Pagoda
functions generally help but sometimes this is outweighed by their overheard, as per the
IP models. Unlike the IP models, the search space is monotonically reduced by adding
the Pagoda functions (given a static heuristic, adding constraints always has this effect)
but the overhead of maintaining these extra constraints increases the time taken overall.

Symmetry breaking is almost uniformly successful at reducing search. On the one
occasion where the performance is affected badly this is due to a conflict with the default
heuristic. As observed in the reversals results, Pagoda functions and symmetry breaking
are complementary, leading to an improved performance overall.

With the exception of Blackbox, the planners performed relatively poorly. This is
partially due to the significantly more complicated goal state, which for some systems
led to memory exhaustion — despite the fact that the search space is smaller than that
of the Solitaire reversals. Blackbox itself performs strongly, as it did on the Solitaire
reversals. The strategy of converting Solitaire to a propositional satisfiability problem
therefore appears to be a good one, possibly because of the simplicity of the game.

7 Fool’s Solitaire

An optimisation variation of Solitaire (named Fool’s Solitaire by Berlekamp, Conway
and Guy [5]) is to reach a position where no further moves are possible in the shortest
sequence of moves. This section describes methods to solve this problem. This is an
optimisation problem, so success now depends on strong pruning of the search space —
it is no longer sufficient simply to find a solution, it must be proven optimal. When
searching the entire space, value ordering is less important (although finding a good
solution early aids pruning). This is borne out experimentally, hence we focus on an
instance of Fool’s Solitaire for each of the unique (up to symmetry) board positions.

There does not appear to be a straightforward way to state this optimisation problem
as a STRIPS model without negated preconditions. Hence, we focus on developing IP and
CP models. These models will be used to solve the problem incrementally. A ‘dead-end’
position is sought after one move. If one cannot be found, the search is extended to two
moves and so on. Trivially, this guarantees optimality. Hence, a series of small problems
are solved instead of one large problem. When a dead end can be found in a relatively
short number of moves, this approach reduces the overall workload considerably.

7.1 Modelling via Integer Programming

An extension of IP Model A is used in an incremental manner to determine the minimum
number of moves required to reach a dead-end. To serve this purpose, a binary decision
variable, C[i, j, t], t = 1, ..., I , is introduced which equals 1 iff there is a peg in hole (i, j)
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with a legal move. I denotes the current depth to which the search extends.

C[i, j, I ] ≥ bState[i, j, I ] + bState[i + 1, j, I ] − bState[i + 2, j, I ] − 1 (16)

C[i, j, I ] ≥ bState[i, j, I ] + bState[i − 1, j, I ] − bState[i − 2, j, I ] − 1 (17)

C[i, j, I ] ≥ bState[i, j, I ] + bState[i, j + 1, I ] − bState[i, j + 2, I ] − 1 (18)

C[i, j, I ] ≥ bState[i, j, I ] + bState[i, j − 1, I ] − bState[i, j − 2, I ] − 1 (19)

The new constraints, Eqs. 16–19, in conjunction with the original constraints Eqs.
2–15, set C[i, j, I ] = 1 if there is a legal move in time-step I .

The objective is to minimise the total penalty incurred by having legal moves. There-
fore, the following simple objective function will suffice:

min
∑

(i,j)∈B

C[i, j, I ] (20)

It is clear that the objective function with value zero indicates a dead-end.

7.2 Modelling via Constraint Programming

Model C is used with a few small modifications. A 77th transition is added, denoted
‘DeadEnd’, representing the fact that the search has reached such a dead-end. The
DeadEnd transition must only be allowed if no other move is possible. A simple way
to achieve this is to use an implication constraint based on bState[]. If any of the
preconditions hold for any other transition, the DeadEnd transition is not allowed:

∀t ∈ {1, . . . , 31} :

(bState[2, 0, t] = 1 ∧ bState[3, 0, t] = 1 ∧ bState[4, 0, t] = 0) ∨ . . .

∨(bState[4, 6, t] = 1 ∧ bState[4, 5, t] = 1 ∧ bState[4, 4, t] = 0)

→ moves[t] 6= DeadEnd

If the incremental search is seeking a dead end at time-step t, moves[t] is set to DeadEnd.
Constraint propagation then forces a sequence of moves to be chosen that lead to a dead
end, if such a sequence exists.

7.3 Results

The results are presented in Table 7 and, as an example, the optimal route to a dead end
in central Solitaire is presented in Figure 8. This optimisation problem is significantly
more difficult than the single-solution problems studied in the preceding sections, hence
a longer period (15 hours) is allowed to solve each instance.

The CP model performs strongly on this problem and is able to solve all instances
when symmetry-breaking is employed. The large beneficial effect of symmetry-breaking
is as expected, since it reduces the search space (which must be explored fully to ensure
optimality) considerably. The symmetry-breaking version of the CP model makes use of
the constraints generated in Section 4.4. Note that, since a specific dead-end state is not
sought, it is safe to use the full set of symmetry-breaking constraints generated.
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# of Moves Choices Time # of Moves Choices Time

(2,0) 9
1,464,461 7,820.0

(3,0) 6
391 2.90

41,917 362.0 96 1.70
NA 242.0 NA 6.90

(2,1) 13
– –

(3,1) 10
1,285,889 7,130.0

7,393,851 61,300.0 20,698 175.0
– – NA 3,900.0

(2,2) 13
– –

(3,2) 9
399,145 2,230.0

6,910,648 57,600.0 11,556 135.0
– – NA 1,680.0

(3,3) 6
552 4.10
96 1.70
NA 26.8

Table 7: Fool’s Solitaire (without sym-breaking, with sym-breaking, IP). Cumulative
times given to three significant figures. A dash indicates no result in 15 hours.

Figure 8: An optimal route to a dead-end in central Solitaire.
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8 Long-hop Solitaire

This section describes an attempt to solve an optimisation variant of Peg Solitaire, known
as Long-hop Solitaire ([3], chapter 8). Pegs are removed in the usual way, but like
draughts/checkers a move starting from the end position of the previous move is counted
as a single move (hereafter referred to as a hop). A hop may contain several moves. The
objective is now to solve the puzzle using as few hops as possible.

8.1 Modelling via Constraint Programming

There does not appear to be a straightforward encoding of this problem for either the
AI Planners or integer programming. Hence, we focus on a CP model. We maintain
the moves[] and bState[] matrices used to model the standard version of the puzzle.
In addition, we use another 0/1 matrix, hops[] to count the number of hops used in a
solution. Informally, the following constraints link moves[] and hops[]:

∀i ∈ {1, . . . , 30} : end(moves[i]) = start(moves[i + 1]) ↔ hops[i + 1] = 1

Clearly, hops[1] is always 1. These constraints can easily be specified in extensional or
logical form. The extensional form is used since it provides stronger pruning due to the
way in which Solver treats logical formulae, and because it does not appear to require
too much overhead. The objective is now to minimise the sum of hops[].

8.2 Symmetry Breaking

Care must be taken when breaking symmetry in Long-hop Solitaire. Consider the sym-
metry of independent moves [15]. As an example, transitions 15 (2, 2 → 4, 2) and 35
(2, 3 → 4, 3) are independent. In the standard version of the puzzle, it is necessary
simply to disallow (moves[i] = 35 ∧ moves[i + 1] = 15) for i in {1 . . . 30} to break
this symmetry. However, adding these constraints in Long-hop Solitaire may prune so-
lutions. If, for example, moves[] contains the sequence 〈30, 35, 15〉, where transition 30
is 0, 3 → 2, 3, exchanging the ‘independent’ moves to give the sequence 〈30, 15, 35〉 does
not produce an equivalent solution. This is because 〈30, 35〉 is a single hop, whereas
〈30, 15〉 is not. A similar problem arises with the move immediately following a pair of
independent moves.

In light of this observation, breaking independent move symmetry is more compli-
cated. Symmetry breaking constraints must now take into account the context of a pair
of independent moves, in terms of the immediately preceding and following moves:

∀i ∈ {1 . . . 28}, {τ, τ ′} ⊆ T :

indep(τ, τ ′) ∧ moves[i + 1] = τ ∧ moves[i + 2] = τ ′ ∧

¬hop(moves[i],moves[i + 1]) ∧ ¬hop(moves[i + 2],moves[i + 3]) →

moves[i + 1] ≤ moves[i + 2]

where {τ, τ ′} is a two-element subset of the set of transitions, T , indep(τ , τ ′) returns true
if τ, τ ′ are independent, and hop(a, b) returns true if the sequence 〈a, b〉 is a hop. These
constraints produce an infeasibly large number of tuples in extensional form, therefore
they are posted as shown here.
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Fixed Optimal No Symmetry-breaking Symmetry-breaking
Time(s) Choices Time(s) Choices

21 27 10.5 818 6.60 336
20 27 29.7 2,423 13.6 882
19 27 83.3 6,627 30.9 2,040
18 27 736 59,319 162 11,248
17 26 3,920 290,513 412 28,819
16 26 717 49,014
15 25 2,200 147,777
14 25 4,260 270,570
13 25 67,500 4,139,194
12 24 428,000 24,813,519

Table 8: Experimental Results: Long-hop Solitaire. Times given to three significant
figures. Experiments with less than 17 moves fixed from the standard reversal solution
only performed with symmetry-breaking.

8.3 Experiments

We experimented with the central Solitaire reversal. As reported in [3], the optimal
number of hops in this case is 18. This optimisation problem is significantly more difficult
than determining a single solution. Our current models are unable to solve the complete
problem. Instead we provide the ‘head’ of the solution found for the standard reversal,
and attempt to optimise the remainder. The results are presented in Table 8, where
‘Fixed’ denotes the number of elements of moves[] fixed (starting from moves[1]) using
assignments from standard central Solitaire.

The standard solution, when viewed as a sequence of hops, takes 27 hops. Until
only 16 moves are used from the standard solution, it is not possible to optimise the
tail of the solution to produce fewer hops than this. The independent moves symmetry-
breaking constraints prove to be very effective in pruning the search tree, despite the
extra complication of checking 4 moves at once rather than just pairs. It should be
possible to add symmetry-breaking constraints based on board and sequence symmetries
in a similar manner to reduce search further.

9 Conclusions and Future Work

This paper has concerned the modelling and solving of certain variations of English Peg
Solitaire. It was demonstrated how CP, IP and AI Planning systems can be used to
solve basic variations of the puzzle, where the aim is to find a single solution. On these
problems, success depended on focusing on the ‘right’ area of the search space early.
The best of the AI planning systems were able to do this most successfully, giving the
most ‘robust’ performance across the set of experiments. The guidance the IP approach
received from relaxations of the problem was also sufficient to allow it to solve a significant
proportion of the problems in a reasonable time. Similarly, by experimenting with a
number of heuristics, a reasonable coverage of this set of problems was obtained via the
CP approach.

The flexibility of the CP and IP approaches was demonstrated when experimenting
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with two optimisation variants of Solitaire, Fool’s Solitaire and Long-hop Solitaire, for
which we could find no formulation suitable for the planners. Indeed, for the latter
variation of the game we could only formulate the problem as a constraint program.
These optimisation problems require the whole search space to be explored in order to
prove a solution optimal. Both CP (especially when enhanced with symmetry-breaking)
and IP proved to be well suited to this task.

The lessons learned from modelling Solitaire should generalise to other sequential
‘planning-style’ problems. Using channelling constraints to specify action pre- and post-
conditions and the techniques used to break symmetries of independent moves and to
remove symmetrical sequences should prove particularly useful. In future, we will explore
the application of dynamic symmetry-breaking methods, such as SBDS [13] or SBDD [11]
to Peg Solitaire. These systems could break some symmetry by applying the board and
independent move symmetries to transform the board states explored by the current
move sequence, and thereby generate constraints/perform a dominance check to prevent
the exploration of a symmetric sequence. One possible obstacle to this approach is that
generating a move sequence from a set of transformed board states may prove expensive.

This approach would not break all symmetry. For example, the first sequence of
Figure 4 cannot be transformed into the second via the application of board or move
symmetries. In order to break this type of sequence symmetry dynamically, it would be
necessary to maintain a record of each unique state visited for comparison against the
current state. This may also prove to be prohibitively expensive.
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