
Introduction to Map/Reduce 

Examples and Principles 



Recall the framework: 

D1 
map() 

• User defines <key,value>, mapper, and 
reducer 

reduce() Output 



Recall the framework: 

D1 

D2 

Dn 

map() 

map() 

map() 

• Hadoop handles the logistics  

reduce() 

reduce() 

O1 

Om 



Hadoop Rule of Thumb 

• 1 mapper per data split (typically) 
 



Hadoop Rule of Thumb 

• 1 mapper per data split (typically) 
 

• 1 reducer per computer core (best 
parallelism) 
 



Hadoop Rule of Thumb 

• 1 mapper per data split (typically) 
 

• 1 reducer per computer core (best 
parallelism) 

      
Processing 
Time 

Number 
Output Files 



Wordcount Strategy 

• Let  <word, 1> be the <key,value> 
• Simple mapper & reducer  
• Hadoop did the hard work of shuffling & 

grouping 
 



Good key-value properties 
• Simple 
• Enables reducers to get correct output  

Shuffling & 
Grouping 

Key-Value 
simplicity 



Good Task Decomposition: 

Mappers:  simple and separable 
 
 
Reducers: easy consolidation 
 



Example:  
Trending Wordcount 



Trending Wordcount 
• Twitter Data:  date, message, location, 

… [other metadata] 
 



Trending Wordcount 
• Twitter Data:  date, message, location, 

… [other metadata] 
 

Task 1 Get word count by day 
Task 2 Get total word count 

 



Trending Wordcount 
 

Task 1: get word count by day 
 
 



Trending Wordcount 
 

Task 1: get word count by day 
 
Design: Use composite key 
 
Map/Reduce: <date word,count> 
 
 
 



Trending Wordcount 
 

Task 2: get total word count  
  
 



Trending Wordcount 
 

Task 2: get total word count  
  
Easy way:  
re-use previous wordcount  
 
 



Trending Wordcount 
 

Task 2: get total word count  
  
Alternatively:  
 use Task 1 output 
 (it’s partially aggregated) 



Cascading Map/Reduce 

D1 
map() reduce() Output 

Task 1: 

E1 
map() reduce() Output 

Task 2: 

Task 3 … 



Example:  
Joining Data 



Joining Data 
• Task: combine datasets by key 

– A standard data management function 
 



Joining Data 
• Task: combine datasets by key 

– A standard data management function 
– In pseudo SQL  

 Select * from table A, table B,  where  
   A.key=B.key 

 



Joining Data 
• Task: combine datasets by key 

– A standard data management function 
– In pseudo SQL  

 Select * from table A, table B,  where  
   A.key=B.key 

– Joins can be inner, left or right outer 
 



Joining Data 
• Task: given two wordcount datasets … 



Joining Data 
• Task: given two wordcount datasets … 

 
 able ,    5 

actor ,     18 
burger ,   25 
. 
. 
. 

File A: <word, total-count> 



Joining Data 
• Task: given two wordcount datasets … 

 
 able ,    5 

actor ,     18 
burger ,   25 
. 
. 
. 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15        
May-03 actor ,   3      
Jul-4      burger,  20   
. 
. 
. 



able ,     5 
actor ,      18 
burger ,    25 
. 
. 
. 

Joining Data 
• Task: combine by word 

 
Jan-16  able  ,    2       
Feb-22  actor ,   15        
May-03 actor ,   3      
Jul-04    burger,  20   
. 
. 
. 

File A: <word, total-count> File B: <date word, day-count> 



Joining Data 
• Result wanted: 

 
able     Jan-16,     2   5 
actor   Feb-22,     15   18     
actor   May-03,     1     18 
burger  Jul-04,     20   25 
. 
. 
. 

File AjoinB: <word date,  day-count  total-count > 



Joining Data 
• Recall that data is split in parts 

 
  
actor 18 

Feb-22 actor 15 

May-03 actor 1 

Apr-15 actor 2 How to gather  
the right pieces? 



Key-Value & Task Decomposition 
• Main design consideration:  
 
Join depends on word  
(e.g. Select * where A.word=B.word) 

 
 



Key-Value & Task Decomposition 
• For the join: 

– Let <key>    = word 
– Let <value> = other info 
  

   <word,    … > 
 

 
 



Key-Value & Task Decomposition 

• Note: 
 
 able ,    5 

actor ,   18 
. . . 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15 
. . . 



Key-Value & Task Decomposition 

• Note: 
 
 able ,    5 

actor ,   18 
. . . 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15 
. . . 

word already the key 



Key-Value & Task Decomposition 

• Note: 
 
 able ,    5 

actor ,   18 
. . . 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15 
. . . 

date needs to be filtered out 



Key-Value & Task Decomposition 

• Note: 
 
 able ,    5 

actor ,   18 
. . . 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15 
. . . 

date needs to be filtered out 
Where should date info go? 



Key-Value & Task Decomposition 
 
   <word,  date day-count total-count >  
 
put date into value field 

 
 



Task Decomposition 
• Now data sets are: 

 File B_new: <word, date count> File A: <word, total-count> 
able  ,   Jan 16   2       
actor ,   Feb-22 15        
actor ,   May-03 3      
burger , Jul-04 20   
. 
. 
. 

able ,      5 
actor ,    18 
burger ,  25 
. 
. 
. 



Task Decomposition 
• How will Hadoop shuffle & group these? 

 File B_new: <word, date day-count> File A: <word, total-count> 
able  ,   Jan-16   2       
actor ,   Feb-22 15        
actor ,   May-03 3      
burger , Jul-04 20   
. 
. 
. 

able ,      5 
actor ,    18 
burger ,  25 
. 
. 
. 



Task Decomposition 
• How will Hadoop shuffle & group these? 

 
actor ,   Feb-22 15        
actor ,   May-03 3      

actor ,    18 

Let’s focus on 1 key: 



Task Decomposition 
• Hadoop gathers the data for a join 

actor ,   Feb-22 15        
actor ,   May-03 3      

actor ,    18 

actor ,   Feb-22 15        
actor ,   18 
actor ,   May-03 3      



Task Decomposition 
• Reducer now has all the data for same 

word grouped together 

actor ,   18 
actor ,   Feb-22 15        
actor ,   May-03 3      

A number or date  
indicates file source 



Task Decomposition 
• Reducer can now join the data and put 

date back into key 

actor ,   18 
actor ,   Feb-22 15        
actor ,   May-03 3      

Feb-22 actor, 15 18        
May-03 actor, 3  18      



Example:  
Vector Multiplication 



Vector Multiplication 
• Task: multiply 2 arrays of N numbers 

– A basic mathematical operation 
– Let’s assume N is very large 

 



Vector Multiplication 

X A B   = 
    (𝟓 x 𝟐.𝟕)     # 1st of A & B 
+ (𝟒 x 1.9)     # 2nd of A & B 
+ (–𝟑.𝟐 x –1.3) # 3rd … 
. 
. 
. 
+ (–𝟐 x 𝟏)    # Nth of A & B 
 

5 
4 
-3.2 
. 
. 
. 
-2 

2.7 
1.9 
-1.3 
. 
. 
. 
1 

• Task: multiply 2 arrays of N numbers 
 



Vector Multiplication 

• Recall: 
– data partitioned in HDFS 
 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 



Vector Multiplication 
• Main design consideration: 
need elements with same index together 
 
Let <key, value> =  
                <index, number> 
 



Vector Multiplication 

• Problem: array partitions 
don’t have an index 
 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 



Vector Multiplication 

• Problem: array partitions 
don’t have an index 
 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 

no index! 



Vector Multiplication 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 

Environment  
Information 



Vector Multiplication 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 

Environment  
Information 

map()   
os.getenv 
        ('map_input_file') 
 

Side effect 

map() can  
access info 

info outside map/reduce 
<key, value> 



Vector Multiplication 
• Let’s assume: 

– each line already has  
 <index, number> 

 

B A 
1, 5 
2, 4 

3, -3.2 
. 

. 
N, -2 

1, 2.7 

2, 1.9 
3,-1.3 
. 

. 
N, 1 

. . .  . . .  



Vector Multiplication 
• Let’s assume: 

– each line already has  
 <index, number> 

 

B A 
1, 5 
2, 4 

3, -3.2 
. 

. 
N, -2 

1, 2.7 

2, 1.9 
3,-1.3 
. 

. 
N, 1 

. . .  . . .  
Note: mapper only needs to 
pass data (identity function) 



Vector Multiplication 

shuffle &  
group indices 

B  A  

1, 5 
2, 4 

3, -3.2 
. 

. 
N, -2 

1, 2.7 

2, 1.9 
3,-1.3 
. 

. 
N, 1 

. . .  . . .  

<index, num> 
 1, 5 

1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 
… 

<index, num> 
 <index, num> 

 



Vector Multiplication 
What should 
reducers do? 

 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 

<index, num> 
 

. . .  
 

A,B grouped  



Vector Multiplication 
Reducer: 
 -get pairs of  
<index, number>  
  

 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 

<index, num> 
 

A,B grouped  

. . .  
 



Vector Multiplication 
Reducer: 
 -get pairs of  
<index, number>  
 -multiply & add  
  
 

 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 

<index, num> 
 

A,B grouped  

17.66 

7.6 

subtotals 

. . .  
 

+ 



Vector Multiplication 
Reducer: 
 -get pairs of  
<index, number>  
 -multiply & add  
  
(Still need get total 
sum, but should be 
largely reduced) 
 

 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 

<index, num> 
 

A,B grouped  

17.66 

7.6 

subtotals 

. . .  
 

+ 



Computational Costs 

In Vector Multiplication 



Computational Costs 

• For Vector Multiplication 
– How many <index, number> are 

output from map()? 



Computational Costs 

• For Vector Multiplication 
– How many <index, number> are 

output from map()? 
– How many <index> groups have to 

be shuffled? 



Computational Costs 

• How many <index, number> are output ? 
A B  

1, 5 
2, 4 
3, -3.2 
. 
. 
. 
N, -2 

1, 2.7 
2, 1.9 
3, -1.3 
. 
. 
. 
N, 1 

For:  2 Vectors with  
         N indices each 
Then:   
        2N   <index, number>  
        are output from map() 



Computational Costs 
• How many <index> groups have to be shuffled? 
 

For:    2N indices and 
 N pairs  
Then: 
   N groups are shuffled to 
   reducers 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 
… 

<index, num> 
 

A,B grouped 



Computational Costs 
• Can we reduce shuffling? 

 
 



Computational Costs 
• Can we reduce shuffling? 

 
• Try: ‘combine’ map indices in mapper 

(works better for Wordcount) 
 
 
 

 
 



Computational Costs 
• Can we reduce shuffling? 

 
• Or Try: use index ranges of length R 

 
 
 



Computational Costs 
• Index Ranges: let R=10 & bin the array indices 

1 2 3 4 … 10 11 12 …..19 20 21 ….       (N-9) …. N N keys 



Computational Costs 
• Index Ranges: let R=10 & bin the array indices 

1 2 3 4 … 10 11 12 …..19 20 21 ….       (N-9) …. N 

1                      2                   3   . . .        N/R 

place 
in  
bins 



Computational Costs 
• For example, let R=10, and bin the array indices 

1 2 3 4 … 10 11 12 …..19 20 21 ….       (N-9) …. N 

1                      2                   3   . . .        N/R 

N keys are now N/R = N/10 keys 



Computational Costs 
• For example, let R=10, and bin the array indices 

1 2 3 4 … 10 11 12 …..19 20 21 ….       (N-9) …. N 

1                      2                   3   . . .        N/R 

N keys are now N/R=N/10 keys 
<key,value> is now 
       <index bin, original-index number> 



Computational Costs 
• Now shuffling costs depend on N/R groups 

If:       R=1   
Then: N/R=N groups (same as before) 
 
If:         R>1 
Then:  N/R<N    (less shuffling to do) 



• Trade-offs: 
 

Computational Costs 

If: 
    size of (N/R) ↑  
Then: 
    shuffle costs ↑ 
 



• Trade-offs: 
 

Computational Costs 

If: 
    size of (N/R) ↑  
Then: 
    shuffle costs ↑ 
But: 
    reducer complexity ↓ 
 



• Trade-offs: 
 

Computational Costs 

If: 
    size of (N/R) ↑  
Then: 
    shuffle costs ↑ 
But: 
    reducer complexity ↓ 
 

-you control R 
(specific tradeoffs 
  depend on data  
  and hardware) 



Vector to Matrices 
• Matrix multiplication needs row-index and 

col-index in the keys 
 

• Matrix multiplication more pertinent to data 
analytic topics 

 



Summary 

And Looking Beyond 



Task Decomposition 

• mappers are separate and independent 
• mappers work on data parts 

 
 



Summary of Map/Reduce  
Design Considerations 

• <key, value> must enable correct output 
• Let Hadoop do the hard work  
• Trade-offs 

 
 
 

Hadoop 

Programming 



Summary of Map/Reduce  
Design Considerations 

• Common mappers: 
– Filter     (subset data) 
– Identity (just pass data) 
– Splitter (as for counting) 

 
 

 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
• Extra info in <values> 

 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
• Extra info in <values> 
• Cascade Map/Reduce jobs 

 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
• Extra info in <values> 
• Cascade Map/Reduce jobs 
• Bin keys into ranges  

 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
• Extra info in <values> 
• Cascade Map/Reduce jobs 
• Bin keys into ranges 
• Aggregate map output when possible  

(combiner option) 
 
 
 



Potential Limitations Map/Reduce  
 

• Must fit <key, value> paradigm 
• Map/Reduce data not persistent 
• Requires programming/debugging 
• Not interactive 

 
 
 
 
 



Beyond Map/Reduce  
 

• Data access tools (Pig, HIVE) 
– SQL like syntax 
 

• Interactivity & Persistency  (Spark) 
 
 
 
 
 


	Introduction to Map/Reduce
	Recall the framework:
	Recall the framework:
	Hadoop Rule of Thumb
	Hadoop Rule of Thumb
	Hadoop Rule of Thumb
	Wordcount Strategy
	Good key-value properties
	Good Task Decomposition:
	Example: �Trending Wordcount
	Trending Wordcount
	Trending Wordcount
	Trending Wordcount
	Trending Wordcount
	Trending Wordcount
	Trending Wordcount
	Trending Wordcount
	Cascading Map/Reduce
	Example: �Joining Data
	Joining Data
	Joining Data
	Joining Data
	Joining Data
	Joining Data
	Joining Data
	Joining Data
	Joining Data
	Joining Data
	Key-Value & Task Decomposition
	Key-Value & Task Decomposition
	Key-Value & Task Decomposition
	Key-Value & Task Decomposition
	Key-Value & Task Decomposition
	Key-Value & Task Decomposition
	Key-Value & Task Decomposition
	Task Decomposition
	Task Decomposition
	Task Decomposition
	Task Decomposition
	Task Decomposition
	Task Decomposition
	Example: �Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Vector Multiplication
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Computational Costs
	Vector to Matrices
	Summary
	Task Decomposition
	Summary of Map/Reduce �Design Considerations
	Summary of Map/Reduce �Design Considerations
	Summary of Map/Reduce �Design Considerations
	Summary of Map/Reduce �Design Considerations
	Summary of Map/Reduce �Design Considerations
	Summary of Map/Reduce �Design Considerations
	Summary of Map/Reduce �Design Considerations
	Potential Limitations Map/Reduce �
	Beyond Map/Reduce �

