
Introduction to Map/Reduce 

Examples and Principles 



Recall the framework: 

D1 
map() 

• User defines <key,value>, mapper, and 
reducer 

reduce() Output 



Recall the framework: 

D1 

D2 

Dn 

map() 

map() 

map() 

• Hadoop handles the logistics  

reduce() 

reduce() 

O1 

Om 



Hadoop Rule of Thumb 

• 1 mapper per data split (typically) 
 



Hadoop Rule of Thumb 

• 1 mapper per data split (typically) 
 

• 1 reducer per computer core (best 
parallelism) 
 



Hadoop Rule of Thumb 

• 1 mapper per data split (typically) 
 

• 1 reducer per computer core (best 
parallelism) 

      
Processing 
Time 

Number 
Output Files 



Wordcount Strategy 

• Let  <word, 1> be the <key,value> 
• Simple mapper & reducer  
• Hadoop did the hard work of shuffling & 

grouping 
 



Good key-value properties 
• Simple 
• Enables reducers to get correct output  

Shuffling & 
Grouping 

Key-Value 
simplicity 



Good Task Decomposition: 

Mappers:  simple and separable 
 
 
Reducers: easy consolidation 
 



Example:  
Trending Wordcount 



Trending Wordcount 
• Twitter Data:  date, message, location, 

… [other metadata] 
 



Trending Wordcount 
• Twitter Data:  date, message, location, 

… [other metadata] 
 

Task 1 Get word count by day 
Task 2 Get total word count 

 



Trending Wordcount 
 

Task 1: get word count by day 
 
 



Trending Wordcount 
 

Task 1: get word count by day 
 
Design: Use composite key 
 
Map/Reduce: <date word,count> 
 
 
 



Trending Wordcount 
 

Task 2: get total word count  
  
 



Trending Wordcount 
 

Task 2: get total word count  
  
Easy way:  
re-use previous wordcount  
 
 



Trending Wordcount 
 

Task 2: get total word count  
  
Alternatively:  
 use Task 1 output 
 (it’s partially aggregated) 



Cascading Map/Reduce 

D1 
map() reduce() Output 

Task 1: 

E1 
map() reduce() Output 

Task 2: 

Task 3 … 



Example:  
Joining Data 



Joining Data 
• Task: combine datasets by key 

– A standard data management function 
 



Joining Data 
• Task: combine datasets by key 

– A standard data management function 
– In pseudo SQL  

 Select * from table A, table B,  where  
   A.key=B.key 

 



Joining Data 
• Task: combine datasets by key 

– A standard data management function 
– In pseudo SQL  

 Select * from table A, table B,  where  
   A.key=B.key 

– Joins can be inner, left or right outer 
 



Joining Data 
• Task: given two wordcount datasets … 



Joining Data 
• Task: given two wordcount datasets … 

 
 able ,    5 

actor ,     18 
burger ,   25 
. 
. 
. 

File A: <word, total-count> 



Joining Data 
• Task: given two wordcount datasets … 

 
 able ,    5 

actor ,     18 
burger ,   25 
. 
. 
. 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15        
May-03 actor ,   3      
Jul-4      burger,  20   
. 
. 
. 



able ,     5 
actor ,      18 
burger ,    25 
. 
. 
. 

Joining Data 
• Task: combine by word 

 
Jan-16  able  ,    2       
Feb-22  actor ,   15        
May-03 actor ,   3      
Jul-04    burger,  20   
. 
. 
. 

File A: <word, total-count> File B: <date word, day-count> 



Joining Data 
• Result wanted: 

 
able     Jan-16,     2   5 
actor   Feb-22,     15   18     
actor   May-03,     1     18 
burger  Jul-04,     20   25 
. 
. 
. 

File AjoinB: <word date,  day-count  total-count > 



Joining Data 
• Recall that data is split in parts 

 
  
actor 18 

Feb-22 actor 15 

May-03 actor 1 

Apr-15 actor 2 How to gather  
the right pieces? 



Key-Value & Task Decomposition 
• Main design consideration:  
 
Join depends on word  
(e.g. Select * where A.word=B.word) 

 
 



Key-Value & Task Decomposition 
• For the join: 

– Let <key>    = word 
– Let <value> = other info 
  

   <word,    … > 
 

 
 



Key-Value & Task Decomposition 

• Note: 
 
 able ,    5 

actor ,   18 
. . . 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15 
. . . 



Key-Value & Task Decomposition 

• Note: 
 
 able ,    5 

actor ,   18 
. . . 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15 
. . . 

word already the key 



Key-Value & Task Decomposition 

• Note: 
 
 able ,    5 

actor ,   18 
. . . 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15 
. . . 

date needs to be filtered out 



Key-Value & Task Decomposition 

• Note: 
 
 able ,    5 

actor ,   18 
. . . 

File A: <word, total-count> File B: <date word, day-count> 
Jan-16  able  ,    2       
Feb-22  actor ,   15 
. . . 

date needs to be filtered out 
Where should date info go? 



Key-Value & Task Decomposition 
 
   <word,  date day-count total-count >  
 
put date into value field 

 
 



Task Decomposition 
• Now data sets are: 

 File B_new: <word, date count> File A: <word, total-count> 
able  ,   Jan 16   2       
actor ,   Feb-22 15        
actor ,   May-03 3      
burger , Jul-04 20   
. 
. 
. 

able ,      5 
actor ,    18 
burger ,  25 
. 
. 
. 



Task Decomposition 
• How will Hadoop shuffle & group these? 

 File B_new: <word, date day-count> File A: <word, total-count> 
able  ,   Jan-16   2       
actor ,   Feb-22 15        
actor ,   May-03 3      
burger , Jul-04 20   
. 
. 
. 

able ,      5 
actor ,    18 
burger ,  25 
. 
. 
. 



Task Decomposition 
• How will Hadoop shuffle & group these? 

 
actor ,   Feb-22 15        
actor ,   May-03 3      

actor ,    18 

Let’s focus on 1 key: 



Task Decomposition 
• Hadoop gathers the data for a join 

actor ,   Feb-22 15        
actor ,   May-03 3      

actor ,    18 

actor ,   Feb-22 15        
actor ,   18 
actor ,   May-03 3      



Task Decomposition 
• Reducer now has all the data for same 

word grouped together 

actor ,   18 
actor ,   Feb-22 15        
actor ,   May-03 3      

A number or date  
indicates file source 



Task Decomposition 
• Reducer can now join the data and put 

date back into key 

actor ,   18 
actor ,   Feb-22 15        
actor ,   May-03 3      

Feb-22 actor, 15 18        
May-03 actor, 3  18      



Example:  
Vector Multiplication 



Vector Multiplication 
• Task: multiply 2 arrays of N numbers 

– A basic mathematical operation 
– Let’s assume N is very large 

 



Vector Multiplication 

X A B   = 
    (𝟓 x 𝟐.𝟕)     # 1st of A & B 
+ (𝟒 x 1.9)     # 2nd of A & B 
+ (–𝟑.𝟐 x –1.3) # 3rd … 
. 
. 
. 
+ (–𝟐 x 𝟏)    # Nth of A & B 
 

5 
4 
-3.2 
. 
. 
. 
-2 

2.7 
1.9 
-1.3 
. 
. 
. 
1 

• Task: multiply 2 arrays of N numbers 
 



Vector Multiplication 

• Recall: 
– data partitioned in HDFS 
 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 



Vector Multiplication 
• Main design consideration: 
need elements with same index together 
 
Let <key, value> =  
                <index, number> 
 



Vector Multiplication 

• Problem: array partitions 
don’t have an index 
 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 



Vector Multiplication 

• Problem: array partitions 
don’t have an index 
 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 

no index! 



Vector Multiplication 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 

Environment  
Information 



Vector Multiplication 

5 
4 

-3.2 
. 

. 
-2 

2.7 

1.9 
-1.3 
. 

. 
1 

. . .  . . .  

A B 

Environment  
Information 

map()   
os.getenv 
        ('map_input_file') 
 

Side effect 

map() can  
access info 

info outside map/reduce 
<key, value> 



Vector Multiplication 
• Let’s assume: 

– each line already has  
 <index, number> 

 

B A 
1, 5 
2, 4 

3, -3.2 
. 

. 
N, -2 

1, 2.7 

2, 1.9 
3,-1.3 
. 

. 
N, 1 

. . .  . . .  



Vector Multiplication 
• Let’s assume: 

– each line already has  
 <index, number> 

 

B A 
1, 5 
2, 4 

3, -3.2 
. 

. 
N, -2 

1, 2.7 

2, 1.9 
3,-1.3 
. 

. 
N, 1 

. . .  . . .  
Note: mapper only needs to 
pass data (identity function) 



Vector Multiplication 

shuffle &  
group indices 

B  A  

1, 5 
2, 4 

3, -3.2 
. 

. 
N, -2 

1, 2.7 

2, 1.9 
3,-1.3 
. 

. 
N, 1 

. . .  . . .  

<index, num> 
 1, 5 

1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 
… 

<index, num> 
 <index, num> 

 



Vector Multiplication 
What should 
reducers do? 

 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 

<index, num> 
 

. . .  
 

A,B grouped  



Vector Multiplication 
Reducer: 
 -get pairs of  
<index, number>  
  

 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 

<index, num> 
 

A,B grouped  

. . .  
 



Vector Multiplication 
Reducer: 
 -get pairs of  
<index, number>  
 -multiply & add  
  
 

 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 

<index, num> 
 

A,B grouped  

17.66 

7.6 

subtotals 

. . .  
 

+ 



Vector Multiplication 
Reducer: 
 -get pairs of  
<index, number>  
 -multiply & add  
  
(Still need get total 
sum, but should be 
largely reduced) 
 

 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 

<index, num> 
 

A,B grouped  

17.66 

7.6 

subtotals 

. . .  
 

+ 



Computational Costs 

In Vector Multiplication 



Computational Costs 

• For Vector Multiplication 
– How many <index, number> are 

output from map()? 



Computational Costs 

• For Vector Multiplication 
– How many <index, number> are 

output from map()? 
– How many <index> groups have to 

be shuffled? 



Computational Costs 

• How many <index, number> are output ? 
A B  

1, 5 
2, 4 
3, -3.2 
. 
. 
. 
N, -2 

1, 2.7 
2, 1.9 
3, -1.3 
. 
. 
. 
N, 1 

For:  2 Vectors with  
         N indices each 
Then:   
        2N   <index, number>  
        are output from map() 



Computational Costs 
• How many <index> groups have to be shuffled? 
 

For:    2N indices and 
 N pairs  
Then: 
   N groups are shuffled to 
   reducers 

1, 5 
1, 2.7 
3, -1.3 
3, -3.2 

2, 1.9 
2, 4 
… 

<index, num> 
 

A,B grouped 



Computational Costs 
• Can we reduce shuffling? 

 
 



Computational Costs 
• Can we reduce shuffling? 

 
• Try: ‘combine’ map indices in mapper 

(works better for Wordcount) 
 
 
 

 
 



Computational Costs 
• Can we reduce shuffling? 

 
• Or Try: use index ranges of length R 

 
 
 



Computational Costs 
• Index Ranges: let R=10 & bin the array indices 

1 2 3 4 … 10 11 12 …..19 20 21 ….       (N-9) …. N N keys 



Computational Costs 
• Index Ranges: let R=10 & bin the array indices 

1 2 3 4 … 10 11 12 …..19 20 21 ….       (N-9) …. N 

1                      2                   3   . . .        N/R 

place 
in  
bins 



Computational Costs 
• For example, let R=10, and bin the array indices 

1 2 3 4 … 10 11 12 …..19 20 21 ….       (N-9) …. N 

1                      2                   3   . . .        N/R 

N keys are now N/R = N/10 keys 



Computational Costs 
• For example, let R=10, and bin the array indices 

1 2 3 4 … 10 11 12 …..19 20 21 ….       (N-9) …. N 

1                      2                   3   . . .        N/R 

N keys are now N/R=N/10 keys 
<key,value> is now 
       <index bin, original-index number> 



Computational Costs 
• Now shuffling costs depend on N/R groups 

If:       R=1   
Then: N/R=N groups (same as before) 
 
If:         R>1 
Then:  N/R<N    (less shuffling to do) 



• Trade-offs: 
 

Computational Costs 

If: 
    size of (N/R) ↑  
Then: 
    shuffle costs ↑ 
 



• Trade-offs: 
 

Computational Costs 

If: 
    size of (N/R) ↑  
Then: 
    shuffle costs ↑ 
But: 
    reducer complexity ↓ 
 



• Trade-offs: 
 

Computational Costs 

If: 
    size of (N/R) ↑  
Then: 
    shuffle costs ↑ 
But: 
    reducer complexity ↓ 
 

-you control R 
(specific tradeoffs 
  depend on data  
  and hardware) 



Vector to Matrices 
• Matrix multiplication needs row-index and 

col-index in the keys 
 

• Matrix multiplication more pertinent to data 
analytic topics 

 



Summary 

And Looking Beyond 



Task Decomposition 

• mappers are separate and independent 
• mappers work on data parts 

 
 



Summary of Map/Reduce  
Design Considerations 

• <key, value> must enable correct output 
• Let Hadoop do the hard work  
• Trade-offs 

 
 
 

Hadoop 

Programming 



Summary of Map/Reduce  
Design Considerations 

• Common mappers: 
– Filter     (subset data) 
– Identity (just pass data) 
– Splitter (as for counting) 

 
 

 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
• Extra info in <values> 

 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
• Extra info in <values> 
• Cascade Map/Reduce jobs 

 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
• Extra info in <values> 
• Cascade Map/Reduce jobs 
• Bin keys into ranges  

 
 
 



Summary of Map/Reduce  
Design Considerations 

• Composite <keys> 
• Extra info in <values> 
• Cascade Map/Reduce jobs 
• Bin keys into ranges 
• Aggregate map output when possible  

(combiner option) 
 
 
 



Potential Limitations Map/Reduce  
 

• Must fit <key, value> paradigm 
• Map/Reduce data not persistent 
• Requires programming/debugging 
• Not interactive 

 
 
 
 
 



Beyond Map/Reduce  
 

• Data access tools (Pig, HIVE) 
– SQL like syntax 
 

• Interactivity & Persistency  (Spark) 
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