Big Data Tutorial 1: distributed wordcount

Hugues Talbot
November 18, 2019

1 Big data tutorial 1

1.1 Wordcount on Hadoop using Python

Lesson 1, Introduction to Map/Reduce Module, Running Wordcount with streaming, using
Python code

1. Open a Terminal (Right-click on Desktop or click Terminal icon in the top toolbar)
2. Review the following to create the python code Section 1: wordcount_mapper.py

1.1.1 section 1: mapper

[11: #!/usr/bin/env python
#the above just indicates to use python to intepret this file

this 'for loop' will set 'line' to an input line from system
standard input file

!

#sys.stdin call 'sys' to read a line from standard input,

note that 'line' is a string object, te wariable, and it has methods that you,
—can apply to it,

as in the next line

line = line.strip() #strip is a method, ie function, assoctiated
with string wvariable, it will strip

the carriage return (by default)
keys = line.split() #split line at blanks (by default),
and return a list of keys
for key in keys: #a for loop through the list of keys
value = 1
print ('{0F\t{1}'.format(key, value)) #the {} is replaced by 0th, 1sty
—~ttems in format list
#also, note that the Hadoop default is 'tab'y
—~separates key from the value

1.1.2 Section 2: wordcount_reducer.py

The reducer code has some basic parts, see the comments in the code. The Lesson 2 assignment
will have a similar basic structure.

[3]: | #!/usr/bin/env python

B o o o .
#This reducer code will input a line of text and

output <word, total-count>

B o o o o .

import sys

last_key = None #initialize these wvariables
this_key = None
running_total = O

for input_line in sys.stdin:
input_line = input_line.strip()

Get Next Word e
this_key, value = input_line.split("\t", 1) #the Hadoop default is tab,
—~separates key value
#the split command returns a list of strings, in this,
—case into 2 variables
value = int(value) #int () will convert a string to integer (thisy
wprogram does no error checking)

oo __
Key Check part

1f this current key is same

as the last one Consolidate

otherwise Emit

oo oo __
if last_key == this_key: #check if key has changed ('==' 4s U
- # logical equalilty check
running_total += value # add value to running total
else:

if last_key: #1f this key that was just read in
4s different, and the previous
(ie last) key is not empy,
then output
the previous <key running-count>
print("{0F\t{1}".format(last_key, running total))
hadoop exzpects tab(ie '\t')
separation
running_total = value #reset wvalues
last_key = this_key

if last_key == this_key:
print("{0}\t{1}".format(last_key, running_total))

None 0

[J: NOTE: If you have not programmed with Python please read the following:

Python notes:

1 indentations are required to indicate blocks of code,

2 all code to be executed as part of some flow control
(e.g. if or for statements) must have the same indentation
(to be safe use 4 space per indentation level, and don't

miz with tabs)

3 flow control conditions have a ':' before

the corresponding block of code

HOoRH R R OH O™ ™ w

You can cut and paste the above into a text file as follows from the terminal prompt in Cloudera
VM.

Type in the following to open a text editor, and then cut and paste the above lines for word-
count_mapper.py into the text editor, save, and exit. Repeat for wordcount_reducer.py

gedit wordcount_mapper.py
gedit wordcount_reducer.py
Enter the following to see that the indentations line up as above

more wordcount_mapper.py

[]:

more wordcount_reducer.py
Enter the following to make it executable
chmod +x wordcount_mapper.py
chmod +x wordcount_reducer.py
Enter the following to see what directory you are in
pwd

It should be /user/cloudera , or something like that.

1.1.3 Section 3. Create some data:
echo “A long time ago in a galaxy far far away” > /home/cloudera/testfilel
echo “Another episode of Star Wars” > /home/cloudera/testfile2

1.1.4 Section 4. Create a directory on the HDFS file system (if already exists that’s OK):

hdfs dfs -mkdir /user/cloudera/input

1.1.5 Section 5. Copy the files from local filesystem to the HDFS filesystem:

hdfs dfs -put /home/cloudera/testfilel /user/cloudera/input
hdfs dfs -put /home/cloudera/testfile2 /user/cloudera/input

1.1.6 Section 6. You can see your files on HDFS

hdfs dfs -Is /user/cloudera/input

1.1.7 Section 7. Run the Hadoop WordCount example with the input and output specified.

Note that your file paths may differ. The “ just means the command continues on next line.

hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \
-input /user/cloudera/input \
-output /user/cloudera/output_new \
-mapper /home/cloudera/wordcount_mapper.py \
-reducer /home/cloudera/wordcount_reducer.py

Hadoop prints out a whole lot of logging or error information. If it runs you will see something

like the following on the screen scroll by:

[]:

[]:

INFO mapreduce.Job: map 0% reduce 07
INFO mapreduce.Job: map 67% reduce 07
INFO mapreduce.Job: map 1007 reduce 0%
INFO mapreduce.Job: map 1007 reduce 1007

INFO mapreduce.Job: Job job_1442937183788_0003 completed successfully

1.1.8 Section 8. Check the output file to see the results:

hdfs dfs -cat /user/cloudera/output_new /part-00000

1.1.9 Section 9. View the output directory:

hdfs dfs -ls /user/cloudera/output_new
Look at the files there and check out the contents, e.g.:

hdfs dfs -cat /user/cloudera/output_new /part-00000

1.1.10 Section 10. Streaming options:

Try: hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar —help
or see hadoop.apache.org/docs/r1.2.1/

Let’s change the number of reduce tasks to see its effects. Setting it to 0 will execute no reducer
and only produce the map output. (Note the output directory is changed in the snippet below
because Hadoop doesn’t like to overwrite output)

hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \
-input /user/cloudera/input \
-output /user/cloudera/output_new_0 \
-mapper /home/cloudera/wordcount_mapper.py \
-reducer /home/cloudera/wordcount_reducer.py \
-numReduceTasks 0

Get the output file from this run, and then upload it:

hdfs dfs -getmerge /user/cloudera/output_new_0/* wordcount_numO_output.txt

[]:

Try to notice the differences between the output when the reducers are run in Step 9, versus the
output when there are no reducers and only the mapper is run in this step. The point of the task
is to be aware of what the intermediate results look like. A successful result will have words and
counts that are not accumulated (which the reducer performs). Hopefully, this will help you get
a sense of how data and tasks are split upin the map/reduce framework, and we will build upon
that in the next lesson.

1.1.11 11. Change the number of reducers to 2

When you use 2 reducers instead of 1 reducer, what is the difference in global sort order?

With 1 reducer, but not 2 reducers, the word counts are in global sort order by word.

With 2 reducers, but not 1 reducer, the word counts are in global sort order by word.

With 1 reducer or 2 reducers, the word counts are in global sort order by word.

With 1 reducer or 2 reducers, the word counts are NOT in global sort order by word.

	Big data tutorial 1
	Wordcount on Hadoop using Python
	section 1: mapper
	Section 2: wordcount_reducer.py
	Section 3. Create some data:
	Section 4. Create a directory on the HDFS file system (if already exists that's OK):
	Section 5. Copy the files from local filesystem to the HDFS filesystem:
	Section 6. You can see your files on HDFS
	Section 7. Run the Hadoop WordCount example with the input and output specified.
	Section 8. Check the output file to see the results:
	Section 9. View the output directory:
	Section 10. Streaming options:
	11. Change the number of reducers to 2

